73,094 research outputs found
Nonlinear softening as a predictive precursor to climate tipping
Approaching a dangerous bifurcation, from which a dynamical system such as
the Earth's climate will jump (tip) to a different state, the current stable
state lies within a shrinking basin of attraction. Persistence of the state
becomes increasingly precarious in the presence of noisy disturbances. We
consider an underlying potential, as defined theoretically for a saddle-node
fold and (via averaging) for a Hopf bifurcation. Close to a stable state, this
potential has a parabolic form; but approaching a jump it becomes increasingly
dominated by softening nonlinearities. If we have already detected a decrease
in the linear decay rate, nonlinear information allows us to estimate the
propensity for early tipping due to noise. We argue that one needs to extract
information about the nonlinear features (a "softening") of the underlying
potential from the time series to judge the probability and timing of tipping.
This analysis is the logical next step if one has detected a decrease of the
linear decay rate. If there is no discernable trend in the linear analysis,
nonlinear softening is even more important in showing the proximity to tipping.
After extensive normal form calibration studies, we check two geological time
series from paleo-climate tipping events for softening of the underlying well.
For the ending of the last ice age, where we find no convincing linear
precursor, we identify a statistically significant nonlinear softening towards
increasing temperature. The analysis has thus successfully detected a warning
of the imminent tipping event.Comment: 22 pages, 11 figures, changed title back, corrected smaller mistakes,
updated reference
Pattern formation in large domains
Pattern formation is a phenomenon that arises in a wide variety of physical, chemical
and biological situations. A great deal of theoretical progress has been made in
understanding the universal aspects of pattern formation in terms of amplitudes of
the modes that make up the pattern. Much of the theory has sound mathematical
justification, but experiments and numerical simulations over the last decade have
revealed complex two-dimensional patterns that do not have a satisfactory theoretical
explanation. This paper focuses on quasi-patterns, where the appearance of small
divisors causes the standard theoretical method to fail, and ends with a discussion
of other outstanding problems in the theory of two-dimensional pattern formation
in large domains
Chemistry on the inside: green chemistry in mesoporous materials
An overview of the rapidly expanding area of tailored mesoporous solids is presented. The synthesis of a wide range of the materials is covered, both inorganically and organically modified. Their applications, in particular those relating to green chemistry, are also highlighted. Finally, potential future directions for these materials are discussed
Cosmology with Varying Constants
The idea of possible time or space variations of the `fundamental' constants
of nature, although not new, is only now beginning to be actively considered by
large numbers of researchers in the particle physics, cosmology and
astrophysics communities. This revival is mostly due to the claims of possible
detection of such variations, in various different contexts and by several
groups. Here, I present the current theoretical motivations and expectations
for such variations, review the current observational status, and discuss the
impact of a possible confirmation of these results in our views of cosmology
and physics as a whole.Comment: 14 pages, no figures. Essay to appear in Phil. Trans. Roy. Soc. Lond.
A Triennial Series (Christmas 2002 Issue
Dynamics of localized spins coupled to the conduction electrons with charge/spin currents
The effects of the charge/spin currents of conduction electrons on the
dynamics of the localized spins are studied in terms of the perturbation in the
exchange coupling between them. The equations of motion for the
localized spins are derived exactly up to , and the equations for
the two-spin system is solved numerically. It is found that the dynamics
depends sensitively upon the relative magnitude of the charge and spin
currents, i.e., it shows steady state, periodic motion, and even chaotic
behavior. Extension to the multi-spin system and its implications including
possible ``spin current detector'' are also discussed.Comment: 5 pages, 4 figures, REVTe
Identifying the transporters of different flavonoids in plants
We recently identified a new component of flavonoid transport pathways in Arabidopsis. The MATE protein FFT (Flower Flavonoid Transporter) is primarily found in guard cells and seedling roots, and mutation of the transporter results in floral and growth phenotypes. The nature of FFT’s substrate requires further exploration but our data suggest that it is a kaempferol diglucoside. Here we discuss potential partner H+-ATPases and possible redundancy among the close homologues within the large Arabidopsis MATE family
Instability Heating of Sympathetically-Cooled Ions in a Linear Paul Trap
Sympathetic laser cooling of ions stored within a linear-geometry, radio
frequency, electric-quadrupole trap has been investigated using computational
and theoretical techniques. The simulation, which allows 5 sample ions to
interact with 35 laser-cooled atomic ions, revealed an instability heating
mechanism, which can prevent ions below a certain critical mass from being
sympathetically cooled. This critical mass can however be varied by changing
the trapping field parameters thus allowing ions with a very large range of
masses to be sympathetically cooled using a single ion species. A theoretical
explanation of this instability heating mechanism is presented which predicts
that the cooling-heating boundary in trapping parameter space is a line of
constant (ion trap stability coefficient), a result supported by the
computational results. The threshold value of depends on the masses of
the interacting ions. A functional form of this dependence is given
- …