2,527 research outputs found

    Characteristic polynomials in real Ginibre ensembles

    Get PDF
    We calculate the average of two characteristic polynomials for the real Ginibre ensemble of asymmetric random matrices, and its chiral counterpart. Considered as quadratic forms they determine a skew-symmetric kernel from which all complex eigenvalue correlations can be derived. Our results are obtained in a very simple fashion without going to an eigenvalue representation, and are completely new in the chiral case. They hold for Gaussian ensembles which are partly symmetric, with kernels given in terms of Hermite and Laguerre polynomials respectively, depending on an asymmetry parameter. This allows us to interpolate between the maximally asymmetric real Ginibre and the Gaussian Orthogonal Ensemble, as well as their chiral counterparts

    On the comparison of volumes of quantum states

    Full text link
    This paper aims to study the \a-volume of \cK, an arbitrary subset of the set of NĂ—NN\times N density matrices. The \a-volume is a generalization of the Hilbert-Schmidt volume and the volume induced by partial trace. We obtain two-side estimates for the \a-volume of \cK in terms of its Hilbert-Schmidt volume. The analogous estimates between the Bures volume and the \a-volume are also established. We employ our results to obtain bounds for the \a-volume of the sets of separable quantum states and of states with positive partial transpose (PPT). Hence, our asymptotic results provide answers for questions listed on page 9 in \cite{K. Zyczkowski1998} for large NN in the sense of \a-volume. \vskip 3mm PACS numbers: 02.40.Ft, 03.65.Db, 03.65.Ud, 03.67.M

    Energy correlations for a random matrix model of disordered bosons

    Full text link
    Linearizing the Heisenberg equations of motion around the ground state of an interacting quantum many-body system, one gets a time-evolution generator in the positive cone of a real symplectic Lie algebra. The presence of disorder in the physical system determines a probability measure with support on this cone. The present paper analyzes a discrete family of such measures of exponential type, and does so in an attempt to capture, by a simple random matrix model, some generic statistical features of the characteristic frequencies of disordered bosonic quasi-particle systems. The level correlation functions of the said measures are shown to be those of a determinantal process, and the kernel of the process is expressed as a sum of bi-orthogonal polynomials. While the correlations in the bulk scaling limit are in accord with sine-kernel or GUE universality, at the low-frequency end of the spectrum an unusual type of scaling behavior is found.Comment: 20 pages, 3 figures, references adde

    Fluctuations and Ergodicity of the Form Factor of Quantum Propagators and Random Unitary Matrices

    Full text link
    We consider the spectral form factor of random unitary matrices as well as of Floquet matrices of kicked tops. For a typical matrix the time dependence of the form factor looks erratic; only after a local time average over a suitably large time window does a systematic time dependence become manifest. For matrices drawn from the circular unitary ensemble we prove ergodicity: In the limits of large matrix dimension and large time window the local time average has vanishingly small ensemble fluctuations and may be identified with the ensemble average. By numerically diagonalizing Floquet matrices of kicked tops with a globally chaotic classical limit we find the same ergodicity. As a byproduct we find that the traces of random matrices from the circular ensembles behave very much like independent Gaussian random numbers. Again, Floquet matrices of chaotic tops share that universal behavior. It becomes clear that the form factor of chaotic dynamical systems can be fully faithful to random-matrix theory, not only in its locally time-averaged systematic time dependence but also in its fluctuations.Comment: 12 pages, RevTEX, 4 figures in eps forma

    Skew-orthogonal Laguerre polynomials for chiral real asymmetric random matrices

    Get PDF
    We apply the method of skew-orthogonal polynomials (SOP) in the complex plane to asymmetric random matrices with real elements, belonging to two different classes. Explicit integral representations valid for arbitrary weight functions are derived for the SOP and for their Cauchy transforms, given as expectation values of traces and determinants or their inverses, respectively. Our proof uses the fact that the joint probability distribution function for all combinations of real eigenvalues and complex conjugate eigenvalue pairs can be written as a product. Examples for the SOP are given in terms of Laguerre polynomials for the chiral ensemble (also called the non-Hermitian real Wishart-Laguerre ensemble), both without and with the insertion of characteristic polynomials. Such characteristic polynomials play the role of mass terms in applications to complex Dirac spectra in field theory. In addition, for the elliptic real Ginibre ensemble we recover the SOP of Forrester and Nagao in terms of Hermite polynomials
    • …
    corecore