4,398 research outputs found

    Imaging geometry through dynamics: the observable representation

    Full text link
    For many stochastic processes there is an underlying coordinate space, VV, with the process moving from point to point in VV or on variables (such as spin configurations) defined with respect to VV. There is a matrix of transition probabilities (whether between points in VV or between variables defined on VV) and we focus on its ``slow'' eigenvectors, those with eigenvalues closest to that of the stationary eigenvector. These eigenvectors are the ``observables,'' and they can be used to recover geometrical features of VV

    Opposite Thermodynamic Arrows of Time

    Full text link
    A model in which two weakly coupled systems maintain opposite running thermodynamic arrows of time is exhibited. Each experiences its own retarded electromagnetic interaction and can be seen by the other. The possibility of opposite-arrow systems at stellar distances is explored and a relation to dark matter suggested.Comment: To appear in Phys. Rev. Let

    Quantum algorithms for hidden nonlinear structures

    Full text link
    Attempts to find new quantum algorithms that outperform classical computation have focused primarily on the nonabelian hidden subgroup problem, which generalizes the central problem solved by Shor's factoring algorithm. We suggest an alternative generalization, namely to problems of finding hidden nonlinear structures over finite fields. We give examples of two such problems that can be solved efficiently by a quantum computer, but not by a classical computer. We also give some positive results on the quantum query complexity of finding hidden nonlinear structures.Comment: 13 page

    Space Station Spartan study

    Get PDF
    The required extension, enhancement, and upgrading of the present Spartan concept are described to conduct operations from the space station using the station's unique facilities and operational features. The space station Spartan (3S), the free flyer will be deployed from and returned to the space station and will conduct scientific missions of much longer duration than possible with the current Spartan. The potential benefits of a space station Spartan are enumerated. The objectives of the study are: (1) to develop a credible concept for a space station Spartan; and (2) to determine the associated requirements and interfaces with the space station to help ensure that the 3S can be properly accommodated

    Observing trajectories with weak measurements in quantum systems in the semiclassical regime

    Full text link
    We propose a scheme allowing to observe the evolution of a quantum system in the semiclassical regime along the paths generated by the propagator. The scheme relies on performing consecutive weak measurements of the position. We show how weak trajectories" can be extracted from the pointers of a series of measurement devices having weakly interacted with the system. The properties of these "weak trajectories" are investigated and illustrated in the case of a time-dependent model system.Comment: v2: Several minor corrections were made. Added Appendix (that will appear as Suppl. Material). To be published in Phys Rev Let

    Statistical comparison of ensemble implementations of Grover's search algorithm to classical sequential searches

    Full text link
    We compare pseudopure state ensemble implementations, quantified by their initial polarization and ensemble size, of Grover's search algorithm to probabilistic classical sequential search algorithms in terms of their success and failure probabilities. We propose a criterion for quantifying the resources used by the ensemble implementation via the aggregate number of oracle invocations across the entire ensemble and use this as a basis for comparison with classical search algorithms. We determine bounds for a critical polarization such that the ensemble algorithm succeeds with a greater probability than the probabilistic classical sequential search. Our results indicate that the critical polarization scales as N^(-1/4) where N is the database size and that for typical room temperature solution state NMR, the polarization is such that the ensemble implementation of Grover's algorithm would be advantageous for N > 10^2

    Sharing Polarization within Quantum Subspaces

    Full text link
    Given an ensemble of n spins, at least some of which are partially polarized, we investigate the sharing of this polarization within a subspace of k spins. We assume that the sharing results in a pseudopure state, characterized by a single purity parameter which we call the bias. As a concrete example we consider ensembles of spin-1/2 nuclei in liquid-state nuclear magnetic resonance (NMR) systems. The shared bias levels are compared with some current entanglement bounds to determine whether the reduced subspaces can give rise to entangled states.Comment: 7 pages, 3 figure

    Analysis of a three-component model phase diagram by Catastrophe Theory

    Full text link
    We analyze the thermodynamical potential of a lattice gas model with three components and five parameters using the methods of Catastrophe Theory. We find the highest singularity, which has codimension five, and establish its transversality. Hence the corresponding seven-degree Landau potential, the canonical form Wigwam or A6A_6, constitutes the adequate starting point to study the overall phase diagram of this model.Comment: 16 pages, Latex file, submitted to Phys. Rev.

    Closed Path Integrals and Renormalisation in Quantum Mechanics

    Full text link
    We suggest a closed form expression for the path integral of quantum transition amplitudes. We introduce a quantum action with renormalized parameters. We present numerical results for the Vx4V \sim x^{4} potential. The renormalized action is relevant for quantum chaos and quantum instantons.Comment: Revised text, 1 figure added; Text (LaTeX file), 1 Figure (ps file
    corecore