24,652 research outputs found
Far infrared supplement: Catalog of infrared observations
The development of a new generation of orbital, airborne and ground-based infrared astronomical observatory facilities, including the infrared astronomical satellite (IRAS), the cosmic background explorer (COBE), the NASA Kuiper airborne observatory, and the NASA infrared telescope facility, intensified the need for a comprehensive, machine-readable data base and catalog of current infrared astronomical observations. The Infrared Astronomical Data Base and its principal data product, this catalog, comprise a machine-readable library of infrared (1 micrometer to 1000 micrometers) astronomical observations published in the scientific literature since 1965
Far infrared supplement: Catalog of infrared observations
The Far Infrared Supplement: catalog of infrared observations summarizes all infrared astronomical observations at far infrared wavelengths published in the scientific literature between 1965 and 1982. The Supplement list contains 25% of the observations in the full catalog of infrared observations (C10), and essentially eliminates most visible stars from the listings. The Supplement is more compact than the main Catalog (it does not contain the bibliography and position index of the C10), and is intended for easy reference during astronomical observations
Catalog of infrared observations including: Bibliography of infrared astronomy and index of infrared source positions
The Catalog of Infrared Observations and its Far Infrared Supplement summarize all infrared astronomical observations at infrared wavelengths published in the scientific literature between 1965 and 1982. The Catalog includes as appendices the Bibliography of infrared astronomy which keys observations in the Catalog with the original journal references, and the index of infrared source positions which gives source positions for alphabetically listed sources in the Catalog. The Catalog data base contains over 85,000 observations of about 10,000 infrared sources, of which about 2,000 have no known visible counterpart
Merged infrared catalogue
A compilation of equatorial coordinates, spectral types, magnitudes, and fluxes from five catalogues of infrared observations is presented. This first edition of the Merged Infrared Catalogue contains 11,201 oservations from the Two-Micron Sky Survey, Observations of Infrared Radiation from Cool Stars, the Air Force Geophysics Laboratory four Color Infrared Sky Survey and its Supplemental Catalog, and from Catalog of 10 micron Celestial Objects (HALL). This compilation is a by-product of a computerized infrared data base under development at Goddard Space Flight Center; the objective is to maintain a complete and current record of all infrared observations from 1 micron m to 1000 micron m of nonsolar system objects. These observations are being placed into a standardized system
Capillary-Wave Model for the Solidification of Dilute Binary Alloys
Starting from a phase-field description of the isothermal solidification of a
dilute binary alloy, we establish a model where capillary waves of the
solidification front interact with the diffusive concentration field of the
solute. The model does not rely on the sharp-interface assumption, and includes
non-equilibrium effects, relevant in the rapid-growth regime. In many
applications it can be evaluated analytically, culminating in the appearance of
an instability which, interfering with the Mullins-Sekerka instability, is
similar to that, found by Cahn in grain-boundary motion.Comment: 17 pages, 12 figure
Dose-dependent new bone formation by extracorporeal shock wave application on the intact femur of rabbits
Background: Whereas various molecular working mechanisms of shock waves have been demonstrated, no study has assessed in detail the influence of varying energy flux densities (EFD) on new bone formation in vivo. Methods: Thirty Chinchilla bastard rabbits were randomly assigned to 5 groups (EFD 0.0, 0.35, 0.5, 0.9 and 1.2 mJ/mm(2)) and treated with extracorporeal shock waves at the distal femoral region (1,500 pulses; 1 Hz frequency). To investigate new bone formation, animals were injected with oxytetracycline at days 5-9 after shock wave application and sacrificed on day 10. Histological sections of all animals were examined using broad-band epifluorescent illumination, contact microradiography and Giemsa-Eosin staining. Results: Application of shock waves induced new bone formation beginning with 0.5 mJ/mm(2) EFD and increasing with 0.9 mJ/mm(2) and 1.2 mJ/mm(2). The latter EFD resulted in new bone formation also on the dorsal cortical bone; cortical fractures and periosteal detachment also occurred. Conclusion: Here, for the first time, a threshold level is presented for new bone formation after applying shock waves to intact bone in vivo. The findings of this study are of considerable significance for preventing unwanted side effects in new approaches in the clinical application of shock waves. Copyright (c) 2008 S. Karger AG, Basel
Self-normalizing phase measurement in multimode terahertz spectroscopy based on photomixing of three lasers
Photomixing of two near-infrared lasers is well established for
continuous-wave terahertz spectroscopy. Photomixing of three lasers allows us
to measure at three terahertz frequencies simultaneously. Similar to Fourier
spectroscopy, the spectral information is contained in an nterferogram, which
is equivalent to the waveform in time-domain spectroscopy. We use one fixed
terahertz frequency \nu_ref to monitor temporal drifts of the setup, i.e., of
the optical path-length difference. The other two frequencies are scanned for
broadband high-resolution spectroscopy. The frequency dependence of the phase
is obtained with high accuracy by normalizing it to the data obtained at
\nu_ref, which eliminates drifts of the optical path-length difference. We
achieve an accuracy of about 1-2 microns or 10^{-8} of the optical path length.
This method is particularly suitable for applications in nonideal environmental
conditions outside of an air-conditioned laboratory.Comment: 5 pages, 5 figure
Mott-Hubbard exciton in the optical conductivity of YTiO3 and SmTiO3
In the Mott-Hubbard insulators YTiO3 and SmTiO3 we study optical excitations
from the lower to the upper Hubbard band, d^1d^1 -> d^0d^2. The multi-peak
structure observed in the optical conductivity reflects the multiplet structure
of the upper Hubbard band in a multi-orbital system. Absorption bands at 2.55
and 4.15 eV in the ferromagnet YTiO3 correspond to final states with a triplet
d^2 configuration, whereas a peak at 3.7 eV in the antiferromagnet SmTiO3 is
attributed to a singlet d^2 final state. A strongly temperature-dependent peak
at 1.95 eV in YTiO3 and 1.8 eV in SmTiO3 is interpreted in terms of a Hubbard
exciton, i.e., a charge-neutral (quasi-)bound state of a hole in the lower
Hubbard band and a double occupancy in the upper one. The binding to such a
Hubbard exciton may arise both due to Coulomb attraction between
nearest-neighbor sites and due to a lowering of the kinetic energy in a system
with magnetic and/or orbital correlations. Furthermore, we observe anomalies of
the spectral weight in the vicinity of the magnetic ordering transitions, both
in YTiO3 and SmTiO3. In the G-type antiferromagnet SmTiO3, the sign of the
change of the spectral weight at T_N depends on the polarization. This
demonstrates that the temperature dependence of the spectral weight is not
dominated by the spin-spin correlations, but rather reflects small changes of
the orbital occupation.Comment: Strongly extended version; new data of SmTiO3 included; detailed
discussion of temperature dependence include
Design of multihundredwatt DIPS for robotic space missions
Design of a dynamic isotope power system (DIPS) general purpose heat source (GPHS) and small free piston Stirling engine (FPSE) is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to SEI precursor missions. These are multihundredwatt missions. The incentive for any dynamic system is that it can save fuel which reduces cost and radiological hazard. However, unlike a conventional DIPS based on turbomachinery converions, the small Stirling DIPS can be advantageously scaled to multihundred watt unit size while preserving size and weight competitiveness with RTG's. Stirling conversion extends the range where dynamic systems are competitive to hundreds of watts (a power range not previously considered for dynamic systems). The challenge of course is to demonstrate reliability similar to RTG experience. Since the competative potential of FPSE as an isotope converter was first identified, work has focused on the feasibility of directly integrating GPHS with the Stirling heater head. Extensive thermal modeling of various radiatively coupled heat source/heater head geometries were performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within safe operating limits under all conditions including shutdown of one engine. Based on these results, preliminary characterizations of multihundred watt units were established
- …