1,778 research outputs found
Anisotropy of the Microwave Sky at 90 GHz: Results from Python II
We report on additional observations of degree scale anisotropy at 90~GHz
from the Amundsen-Scott South Pole Station in Antarctica. Observations during
the first season with the Python instrument yielded a statistically significant
sky signal; in this paper we report the confirmation of that signal with data
taken in the second year, and on results from an interleaving set of fields.Comment: 10 pages, plus 2 figures. Postscript and uufiles versions available
via anonymous ftp at ftp://astro.uchicago.edu/pub/astro/ruhl/pyI
Absorption of Ultrashort Laser Pulses in Strongly Overdense Targets
We report on the first absorption experiments of sub-10 fs high-contrast
Ti:Sa laser pulses incident on solid targets. The very good contrast of the
laser pulse assures the formation of a very small pre-plasma and the pulse
interacts with the matter close to solid density. Experimental results indicate
that p-polarized laser pulses are absorbed up to 80 percent at 80 degrees
incidence angle. The simulation results of PSC PIC code clearly confirm the
observations and show that the collisionless absorption works efficiently in
steep density profiles
All sky CMB map from cosmic strings integrated Sachs-Wolfe effect
By actively distorting the Cosmic Microwave Background (CMB) over our past
light cone, cosmic strings are unavoidable sources of non-Gaussianity.
Developing optimal estimators able to disambiguate a string signal from the
primordial type of non-Gaussianity requires calibration over synthetic full sky
CMB maps, which till now had been numerically unachievable at the resolution of
modern experiments. In this paper, we provide the first high resolution full
sky CMB map of the temperature anisotropies induced by a network of cosmic
strings since the recombination. The map has about 200 million sub-arcminute
pixels in the healpix format which is the standard in use for CMB analyses
(Nside=4096). This premiere required about 800,000 cpu hours; it has been
generated by using a massively parallel ray tracing method piercing through a
thousands of state of art Nambu-Goto cosmic string numerical simulations which
pave the comoving volume between the observer and the last scattering surface.
We explicitly show how this map corrects previous results derived in the flat
sky approximation, while remaining completely compatible at the smallest
scales.Comment: 8 pages, 4 figures, uses RevTeX. References added, matches published
versio
Primordial helium recombination II: two-photon processes
Interpretation of precision measurements of the cosmic microwave background
(CMB) will require a detailed understanding of the recombination era, which
determines such quantities as the acoustic oscillation scale and the Silk
damping scale. This paper is the second in a series devoted to the subject of
helium recombination, with a focus on two-photon processes in He I. The
standard treatment of these processes includes only the spontaneous two-photon
decay from the 2^1S level. We extend this treatment by including five
additional effects, some of which have been suggested in recent papers but
whose impact on He I recombination has not been fully quantified. These are:
(i) stimulated two-photon decays; (ii) two-photon absorption of redshifted HeI
line radiation; (iii) two-photon decays from highly excited levels in HeI (n^1S
and n^1D, with n>=3); (iv) Raman scattering; and (v) the finite width of the
2^1P^o resonance. We find that effect (iii) is highly suppressed when one takes
into account destructive interference between different intermediate states
contributing to the two-photon decay amplitude. Overall, these effects are
found to be insignificant: they modify the recombination history at the level
of several parts in 10^4.Comment: 19 pages, 11 figures, to be submitted to PR
Three-dimensional Gross-Pitaevskii solitary waves in optical lattices: stabilization using the artificial quartic kinetic energy induced by lattice shaking
In this Letter, we show that a three-dimensional Bose-Einstein solitary wave
can become stable if the dispersion law is changed from quadratic to quartic.
We suggest a way to realize the quartic dispersion, using shaken optical
lattices. Estimates show that the resulting solitary waves can occupy as little
as -th of the Brillouin zone in each of the three directions and
contain as many as atoms, thus representing a \textit{fully
mobile} macroscopic three-dimensional object.Comment: 8 pages, 1 figure, accepted in Phys. Lett.
Focusing of Intense Subpicosecond Laser Pulses in Wedge Targets
Two dimensional particle-in-cell simulations characterizing the interaction
of ultraintense short pulse lasers in the range 10^{18} \leq I \leq 10^{20}
W/cm^{2} with converging target geometries are presented. Seeking to examine
intensity amplification in high-power laser systems, where focal spots are
typically non-diffraction limited, we describe key dynamical features as the
injected laser intensity and convergence angle of the target are systematically
varied. We find that laser pulses are focused down to a wavelength with the
peak intensity amplified by an order of magnitude beyond its vacuum value, and
develop a simple model for how the peak location moves back towards the
injection plane over time. This performance is sustained over hundreds of
femtoseconds and scales to laser intensities beyond 10^{20} W/cm^{2} at 1 \mu m
wavelength.Comment: 5 pages, 6 figures, accepted for publication in Physics of Plasma
Using the new products margin to predict the industry-level impact of trade reform
This paper develops a methodology for predicting the impact of trade liberalization on exports by industry (3-digit ISIC) based on the pre-liberalization distribution of exports by product (5-digit SITC). Using the results of Kehoe and Ruhl (2013) that much of the growth in trade after trade liberalization is in products that are traded very little or not at all, we predict that industries with a higher share of exports generated by least traded products will experience more growth. Using our methodology, we develop predictions for industry-level changes in trade for the United States and Korea following the U.S.-Korea Free Trade Agreement (KORUS). As a test for our methodology, we show that it performs significantly better than the applied general equilibrium models originally used for the policy evaluation of the North American Free Trade Agreement (NAFTA)
A Signature of Cosmic Strings Wakes in the CMB Polarization
We calculate a signature of cosmic strings in the polarization of the cosmic
microwave background (CMB). We find that ionization in the wakes behind moving
strings gives rise to extra polarization in a set of rectangular patches in the
sky whose length distribution is scale-invariant. The length of an individual
patch is set by the co-moving Hubble radius at the time the string is
perturbing the CMB. The polarization signal is largest for string wakes
produced at the earliest post-recombination time, and for an alignment in which
the photons cross the wake close to the time the wake is created. The maximal
amplitude of the polarization relative to the temperature quadrupole is set by
the overdensity of free electrons inside a wake which depends on the ionization
fraction inside the wake. The signal can be as high as
in degree scale polarization for a string at high redshift (near recombination)
and a string tension given by .Comment: 8 pages, 3 figure
- …