1,778 research outputs found

    Anisotropy of the Microwave Sky at 90 GHz: Results from Python II

    Get PDF
    We report on additional observations of degree scale anisotropy at 90~GHz from the Amundsen-Scott South Pole Station in Antarctica. Observations during the first season with the Python instrument yielded a statistically significant sky signal; in this paper we report the confirmation of that signal with data taken in the second year, and on results from an interleaving set of fields.Comment: 10 pages, plus 2 figures. Postscript and uufiles versions available via anonymous ftp at ftp://astro.uchicago.edu/pub/astro/ruhl/pyI

    Absorption of Ultrashort Laser Pulses in Strongly Overdense Targets

    Full text link
    We report on the first absorption experiments of sub-10 fs high-contrast Ti:Sa laser pulses incident on solid targets. The very good contrast of the laser pulse assures the formation of a very small pre-plasma and the pulse interacts with the matter close to solid density. Experimental results indicate that p-polarized laser pulses are absorbed up to 80 percent at 80 degrees incidence angle. The simulation results of PSC PIC code clearly confirm the observations and show that the collisionless absorption works efficiently in steep density profiles

    All sky CMB map from cosmic strings integrated Sachs-Wolfe effect

    Full text link
    By actively distorting the Cosmic Microwave Background (CMB) over our past light cone, cosmic strings are unavoidable sources of non-Gaussianity. Developing optimal estimators able to disambiguate a string signal from the primordial type of non-Gaussianity requires calibration over synthetic full sky CMB maps, which till now had been numerically unachievable at the resolution of modern experiments. In this paper, we provide the first high resolution full sky CMB map of the temperature anisotropies induced by a network of cosmic strings since the recombination. The map has about 200 million sub-arcminute pixels in the healpix format which is the standard in use for CMB analyses (Nside=4096). This premiere required about 800,000 cpu hours; it has been generated by using a massively parallel ray tracing method piercing through a thousands of state of art Nambu-Goto cosmic string numerical simulations which pave the comoving volume between the observer and the last scattering surface. We explicitly show how this map corrects previous results derived in the flat sky approximation, while remaining completely compatible at the smallest scales.Comment: 8 pages, 4 figures, uses RevTeX. References added, matches published versio

    Primordial helium recombination II: two-photon processes

    Get PDF
    Interpretation of precision measurements of the cosmic microwave background (CMB) will require a detailed understanding of the recombination era, which determines such quantities as the acoustic oscillation scale and the Silk damping scale. This paper is the second in a series devoted to the subject of helium recombination, with a focus on two-photon processes in He I. The standard treatment of these processes includes only the spontaneous two-photon decay from the 2^1S level. We extend this treatment by including five additional effects, some of which have been suggested in recent papers but whose impact on He I recombination has not been fully quantified. These are: (i) stimulated two-photon decays; (ii) two-photon absorption of redshifted HeI line radiation; (iii) two-photon decays from highly excited levels in HeI (n^1S and n^1D, with n>=3); (iv) Raman scattering; and (v) the finite width of the 2^1P^o resonance. We find that effect (iii) is highly suppressed when one takes into account destructive interference between different intermediate states contributing to the two-photon decay amplitude. Overall, these effects are found to be insignificant: they modify the recombination history at the level of several parts in 10^4.Comment: 19 pages, 11 figures, to be submitted to PR

    Three-dimensional Gross-Pitaevskii solitary waves in optical lattices: stabilization using the artificial quartic kinetic energy induced by lattice shaking

    Full text link
    In this Letter, we show that a three-dimensional Bose-Einstein solitary wave can become stable if the dispersion law is changed from quadratic to quartic. We suggest a way to realize the quartic dispersion, using shaken optical lattices. Estimates show that the resulting solitary waves can occupy as little as ∼1/20\sim 1/20-th of the Brillouin zone in each of the three directions and contain as many as N=103N = 10^{3} atoms, thus representing a \textit{fully mobile} macroscopic three-dimensional object.Comment: 8 pages, 1 figure, accepted in Phys. Lett.

    Focusing of Intense Subpicosecond Laser Pulses in Wedge Targets

    Full text link
    Two dimensional particle-in-cell simulations characterizing the interaction of ultraintense short pulse lasers in the range 10^{18} \leq I \leq 10^{20} W/cm^{2} with converging target geometries are presented. Seeking to examine intensity amplification in high-power laser systems, where focal spots are typically non-diffraction limited, we describe key dynamical features as the injected laser intensity and convergence angle of the target are systematically varied. We find that laser pulses are focused down to a wavelength with the peak intensity amplified by an order of magnitude beyond its vacuum value, and develop a simple model for how the peak location moves back towards the injection plane over time. This performance is sustained over hundreds of femtoseconds and scales to laser intensities beyond 10^{20} W/cm^{2} at 1 \mu m wavelength.Comment: 5 pages, 6 figures, accepted for publication in Physics of Plasma

    Using the new products margin to predict the industry-level impact of trade reform

    Get PDF
    This paper develops a methodology for predicting the impact of trade liberalization on exports by industry (3-digit ISIC) based on the pre-liberalization distribution of exports by product (5-digit SITC). Using the results of Kehoe and Ruhl (2013) that much of the growth in trade after trade liberalization is in products that are traded very little or not at all, we predict that industries with a higher share of exports generated by least traded products will experience more growth. Using our methodology, we develop predictions for industry-level changes in trade for the United States and Korea following the U.S.-Korea Free Trade Agreement (KORUS). As a test for our methodology, we show that it performs significantly better than the applied general equilibrium models originally used for the policy evaluation of the North American Free Trade Agreement (NAFTA)

    A Signature of Cosmic Strings Wakes in the CMB Polarization

    Full text link
    We calculate a signature of cosmic strings in the polarization of the cosmic microwave background (CMB). We find that ionization in the wakes behind moving strings gives rise to extra polarization in a set of rectangular patches in the sky whose length distribution is scale-invariant. The length of an individual patch is set by the co-moving Hubble radius at the time the string is perturbing the CMB. The polarization signal is largest for string wakes produced at the earliest post-recombination time, and for an alignment in which the photons cross the wake close to the time the wake is created. The maximal amplitude of the polarization relative to the temperature quadrupole is set by the overdensity of free electrons inside a wake which depends on the ionization fraction ff inside the wake. The signal can be as high as 0.06μK0.06 {\rm \mu K} in degree scale polarization for a string at high redshift (near recombination) and a string tension μ\mu given by Gμ=10−7G \mu = 10^{-7}.Comment: 8 pages, 3 figure
    • …
    corecore