3,597 research outputs found
Star formation in Seyfert galaxies
An analysis of the IRAS data for a sample of classical (optically selected) Seyfert galaxies is presented. The IRAS fluxes at 25 micron, 60 micron, and 100 micron are found to be uncorrelated or only very weakly correlated with the UV/Optical continuum flux and the near and mid IR flux at 3.5 and 10 microns. To investigate the possibility that star formation accounts for the far IR flux, the IRAS measurements for the Seyfert galaxies are compared to IRAS observations of a sample of normal spiral galaxies, and a sample of Starburst galaxies. It is shown that the far IR luminosities and far IR colors of Seyfert galaxies are indistinguishable from those of the Starburst galaxies. Besides, normal galaxies are an order of magnitude less luminous than both the Seyfert and the Starburst galaxies. This indicates that star formation produces the bulk of the far infrared emission in Seyfert galaxies
Condensation in an Economic Model with Brand Competition
We present a linear agent based model on brand competition. Each agent
belongs to one of the two brands and interacts with its nearest neighbors. In
the process the agent can decide to change to the other brand if the move is
beneficial. The numerical simulations show that the systems always condenses
into a state when all agents belong to a single brand. We study the
condensation times for different parameters of the model and the influence of
different mechanisms to avoid condensation, like anti monopoly rules and brand
fidelity.Comment: Accepted in: International Journal of Modern Physics
Active galactic nuclei synapses: X-ray versus optical classifications using artificial neural networks
(Abridged) Many classes of active galactic nuclei (AGN) have been defined
entirely throughout optical wavelengths while the X-ray spectra have been very
useful to investigate their inner regions. However, optical and X-ray results
show many discrepancies that have not been fully understood yet. The aim of
this paper is to study the "synapses" between the X-ray and optical
classifications.
For the first time, the new EFLUXER task allowed us to analyse broad band
X-ray spectra of emission line nuclei (ELN) without any prior spectral fitting
using artificial neural networks (ANNs). Our sample comprises 162 XMM-Newton/pn
spectra of 90 local ELN in the Palomar sample. It includes starbursts (SB),
transition objects (T2), LINERs (L1.8 and L2), and Seyferts (S1, S1.8, and S2).
The ANNs are 90% efficient at classifying the trained classes S1, S1.8, and
SB. The S1 and S1.8 classes show a wide range of S1- and S1.8-like components.
We suggest that this is related to a large degree of obscuration at X-rays. The
S1, S1.8, S2, L1.8, L2/T2/SB-AGN (SB with indications of AGN), and SB classes
have similar average X-ray spectra within each class, but these average spectra
can be distinguished from class to class. The S2 (L1.8) class is linked to the
S1.8 (S1) class with larger SB-like component than the S1.8 (S1) class. The L2,
T2, and SB-AGN classes conform a class in the X-rays similar to the S2 class
albeit with larger fractions of SB-like component. This SB-like component is
the contribution of the star-formation in the host galaxy, which is large when
the AGN is weak. An AGN-like component seems to be present in the vast majority
of the ELN, attending to the non-negligible fraction of S1-like or S1.8-like
component. This trained ANN could be used to infer optical properties from
X-ray spectra in surveys like eRosita.Comment: 15 pages, 7 figures, accepted for publication in A&A. Appendix B only
in the full version of the paper here:
https://dl.dropboxusercontent.com/u/3484086/AGNSynapsis_OGM_online.pd
Discovery of faint double-peak Halpha emission in the halo of low redshift galaxies
Aiming at the detection of cosmological gas being accreted onto galaxies of
the local Universe, we examined the Halpha emission in the halo of 164 galaxies
in the field of view of the Multi-Unit Spectroscopic Explorer Wide survey
(\musew ) with observable Halpha (redshift < 0.42). An exhaustive screening of
the corresponding Halpha images led us to select 118 reliable Halpha emitting
gas clouds. The signals are faint, with a surface brightness of 10**(-17.3 pm
0.3) erg/s/cm2/arcsec2. Through statistical tests and other arguments, we ruled
out that they are created by instrumental artifacts, telluric line residuals,
or high redshift interlopers. Around 38% of the time, the Halpha line profile
shows a double peak with the drop in intensity at the rest-frame of the central
galaxy, and with a typical peak-to-peak separation of the order of pm 200 km/s.
Most line emission clumps are spatially unresolved. The mass of emitting gas is
estimated to be between one and 10**(-3) times the stellar mass of the central
galaxy. The signals are not isotropically distributed; their azimuth tends to
be aligned with the major axis of the corresponding galaxy. The distances to
the central galaxies are not random either. The counts drop at a distance > 50
galaxy radii, which roughly corresponds to the virial radius of the central
galaxy. We explore several physical scenarios to explain this Halpha emission,
among which accretion disks around rogue intermediate mass black holes fit the
observations best.Comment: pay attention to the last sentence of the abstract! Accepted for
publication in Ap
Mid-infrared imaging- and spectro-polarimetric subarcsecond observations of NGC 1068
We present sub-arcsecond 7.513 m imaging- and spectro-polarimetric
observations of NGC 1068 using CanariCam on the 10.4-m Gran Telescopio
CANARIAS. At all wavelengths, we find:
(1) A 90 60 pc extended polarized feature in the northern ionization
cone, with a uniform 44 polarization angle. Its polarization
arises from dust and gas emission in the ionization cone, heated by the active
nucleus and jet, and further extinguished by aligned dust grains in the host
galaxy. The polarization spectrum of the jet-molecular cloud interaction at
24 pc from the core is highly polarized, and does not show a silicate
feature, suggesting that the dust grains are different from those in the
interstellar medium.
(2) A southern polarized feature at 9.6 pc from the core. Its
polarization arises from a dust emission component extinguished by a large
concentration of dust in the galaxy disc. We cannot distinguish between dust
emission from magnetically aligned dust grains directly heated by the jet close
to the core, and aligned dust grains in the dusty obscuring material
surrounding the central engine. Silicate-like grains reproduce the polarized
dust emission in this feature, suggesting different dust compositions in both
ionization cones.
(3) An upper limit of polarization degree of 0.3 per cent in the core. Based
on our polarization model, the expected polarization of the obscuring dusty
material is 0.1 per cent in the 813 m wavelength range. This
low polarization may be arising from the passage of radiation through aligned
dust grains in the shielded edges of the clumps.Comment: 17 pages, 10 figures, accepted for publication at MNRA
- …