13,763 research outputs found

    Nonmodal energy growth and optimal perturbations in compressible plane Couette flow

    Full text link
    Nonmodal transient growth studies and estimation of optimal perturbations have been made for the compressible plane Couette flow with three-dimensional disturbances. The maximum amplification of perturbation energy over time, GmaxG_{\max}, is found to increase with increasing Reynolds number Re{\it Re}, but decreases with increasing Mach number MM. More specifically, the optimal energy amplification GoptG_{\rm opt} (the supremum of GmaxG_{\max} over both the streamwise and spanwise wavenumbers) is maximum in the incompressible limit and decreases monotonically as MM increases. The corresponding optimal streamwise wavenumber, αopt\alpha_{\rm opt}, is non-zero at M=0, increases with increasing MM, reaching a maximum for some value of MM and then decreases, eventually becoming zero at high Mach numbers. While the pure streamwise vortices are the optimal patterns at high Mach numbers, the modulated streamwise vortices are the optimal patterns for low-to-moderate values of the Mach number. Unlike in incompressible shear flows, the streamwise-independent modes in the present flow do not follow the scaling law G(t/Re)Re2G(t/{\it Re}) \sim {\it Re}^2, the reasons for which are shown to be tied to the dominance of some terms in the linear stability operator. Based on a detailed nonmodal energy analysis, we show that the transient energy growth occurs due to the transfer of energy from the mean flow to perturbations via an inviscid {\it algebraic} instability. The decrease of transient growth with increasing Mach number is also shown to be tied to the decrease in the energy transferred from the mean flow (E˙1\dot{\mathcal E}_1) in the same limit

    Does responsibility affect the public valuation of health care interventions? A relative valuation approach to health care safety

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright © 2012, International Society for Pharmacoeconomics and Outcomes Research (ISPOR).Objective - Health services often spend more on safety interventions than seems cost-effective. This study investigates whether the public value safety-related health care improvements more highly than the same improvements in contexts where the health care system is not responsible. Method - An online survey was conducted to elicit the relative importance placed on preventing harms caused by 1) health care (hospital-acquired infections, drug administration errors, injuries to health care staff), 2) individuals (personal lifestyle choices, sports-related injuries), and 3) nature (genetic disorders). Direct valuations were obtained from members of the public by using a person trade-off or “matching” method. Participants were asked to choose between two preventative interventions of equal cost and equal health benefit per person for the same number of people, but differing in causation. If participants indicated a preference, their strength of preference was measured by using person trade-off. Results - Responses were obtained from 1030 people, reflecting the sociodemographic mix of the UK population. Participants valued interventions preventing hospital-acquired infections (1.31) more highly than genetic disorders (1.0), although drug errors were valued similarly to genetic disorders (1.07), and interventions to prevent injury to health care staff were given less weight than genetic disorders (0.71). Less weight was also given to interventions related to lifestyle (0.65) and sports injuries (0.41). Conclusion - Our results suggest that people do not attach a simple fixed premium to “safety-related” interventions but that preferences depend more subtly on context. The use of the results of such public preference surveys to directly inform policy would therefore be premature.Brunel University

    Time Spent Working in Custody Influences Work Sample Test Battery Performance of Deputy Sheriffs Compared to Recruits

    Get PDF
    This study determined the influence of years spent working in custody on fitness measured by a state-specific testing battery (Work Sample Test Battery; WSTB) in deputy sheriffs. Retrospective analysis was conducted on one patrol school class (51 males, 13 females) divided into three groups depending on time spent working in custody: DS24 (<24 months; n = 20); DS2547 (25–47 months; n = 23); and DS48+ (≥48 months; n = 21). These groups were compared to a recruit class (REC; 219 males, 34 females) in the WSTB, which comprised five tasks completed for time: 99-yard (90.53-m) obstacle course (99OC); 165-pound (75-kg) dummy drag; six-foot (1.83-m) chain link fence (CLF) and solid wall (SW) climb; and 500-yard (457.2-m) run (500R). A univariate analysis of covariance (ANCOVA) (controlling for sex and age) with Bonferroni post hoc determined significant between-group differences. DS48+ were slower in the 99OC compared to the REC (p = 0.007) and performed the CLF and SW slower than all groups (p ≤ 0.012). DS24, DS2547, and DS48+ were all slower than REC in the 500R (p ≤ 0.002). Physical training should be implemented to maintain fitness and job-specific task performance in deputy sheriffs working custody, especially considering the sedentary nature of this work

    Linear waves in sheared flows. Lower bound of the vorticity growth and propagation discontinuities in the parameters space

    Get PDF
    This study provides sufficient conditions for the temporal monotonic decay of enstrophy for two-dimensional perturbations traveling in the incompressible, viscous, plane Poiseuille and Couette flows. Extension of J. L. Synge's procedure (1938) to the initial-value problem allowed us to find the region of the wavenumber-Reynolds number map where the enstrophy of any initial disturbance cannot grow. This region is wider than the kinetic energy's one. We also show that the parameters space is split in two regions with clearly distinct propagation and dispersion properties

    BeppoSAX LECS background subtraction techniques

    Full text link
    We present 3 methods for the subtraction of non-cosmic and unresolved cosmic backgrounds observed by the Low-Energy Concentrator Spectrometer (LECS) on-board BeppoSAX. Removal of these backgrounds allows a more accurate modeling of the spectral data from point and small-scale extended sources. At high (>|25| degree) galactic latitudes, subtraction using a standard background spectrum works well. At low galactic latitudes, or in complex regions of the X-ray sky, two alternative methods are presented. The first uses counts obtained from two semi-annuli near the outside of the LECS field of view to estimate the background at the source location. The second method uses ROSAT Position Sensitive Proportional Counter (PSPC) all-sky survey data to estimate the LECS background spectrum for a given pointing position. A comparison of the results from these methods provides an estimate of the systematic uncertainties. For high galactic latitude fields, all 3 methods give 3 sigma confidence uncertainties of <0.9 10^-3 count/s (0.1-10 keV), or <1.5 10^-3 count/s (0.1-2 keV). These correspond to 0.1-2.0 keV fluxes of 0.7-1.8 and 0.5-1.1 10^-13 erg/cm2/s for a power-law spectrum with a photon index of 2 and photoelectric absorption of 3 10^20 and 3 10^21 atom/cm2, respectively. At low galactic latitudes, or in complex regions of the X-ray sky, the uncertainties are a factor ~2.5 higher.Comment: 13 pages. Accepted for publication in A&A

    Linear stability, transient energy growth and the role of viscosity stratification in compressible plane Couette flow

    Full text link
    Linear stability and the non-modal transient energy growth in compressible plane Couette flow are investigated for two prototype mean flows: (a) the {\it uniform shear} flow with constant viscosity, and (b) the {\it non-uniform shear} flow with {\it stratified} viscosity. Both mean flows are linearly unstable for a range of supersonic Mach numbers (MM). For a given MM, the critical Reynolds number (ReRe) is significantly smaller for the uniform shear flow than its non-uniform shear counterpart. An analysis of perturbation energy reveals that the instability is primarily caused by an excess transfer of energy from mean-flow to perturbations. It is shown that the energy-transfer from mean-flow occurs close to the moving top-wall for ``mode I'' instability, whereas it occurs in the bulk of the flow domain for ``mode II''. For the non-modal analysis, it is shown that the maximum amplification of perturbation energy, GmaxG_{\max}, is significantly larger for the uniform shear case compared to its non-uniform counterpart. For α=0\alpha=0, the linear stability operator can be partitioned into LLˉ+Re2Lp{\cal L}\sim \bar{\cal L} + Re^2{\cal L}_p, and the ReRe-dependent operator Lp{\cal L}_p is shown to have a negligibly small contribution to perturbation energy which is responsible for the validity of the well-known quadratic-scaling law in uniform shear flow: G(t/Re)Re2G(t/{\it Re}) \sim {\it Re}^2. A reduced inviscid model has been shown to capture all salient features of transient energy growth of full viscous problem. For both modal and non-modal instability, it is shown that the {\it viscosity-stratification} of the underlying mean flow would lead to a delayed transition in compressible Couette flow
    corecore