This study provides sufficient conditions for the temporal monotonic decay of
enstrophy for two-dimensional perturbations traveling in the incompressible,
viscous, plane Poiseuille and Couette flows. Extension of J. L. Synge's
procedure (1938) to the initial-value problem allowed us to find the region of
the wavenumber-Reynolds number map where the enstrophy of any initial
disturbance cannot grow. This region is wider than the kinetic energy's one. We
also show that the parameters space is split in two regions with clearly
distinct propagation and dispersion properties