17,169 research outputs found

    Effects of antibodies against dynein and tubulin on the stiffness of flagellar axonemes

    Get PDF
    Antidynein antibodies, previously shown to inhibit flagellar oscillation and active sliding of axonemal microtubules, increase the bending resistance of axonemes measured under relaxing conditions, but not the bending resistance of axonemes measured under rigor conditions. These observations suggest that antidynein antibodies can stabilize rigor cross-bridges between outer-doublet microtubules, by interfering with ATP-induced cross-bridge detachment. Stabilization of a small number of cross-bridge appears to be sufficient to cause substantial inhibition of the frequency of flagellar oscillation. Antitubulin antibodies, previously shown to inhibit flagellar oscillation without inhibiting active sliding of axonemal microtubules, do not increase the static bending resistance of axonemes. However, we observed a viscoelastic effect, corresponding to a large increase in the immediate bending resistance. This immediate bending resistance increase may be sufficient to explain inhibition of flagellar oscillation; but several alternative explanations cannot yet be excluded

    Quantum dynamics of non-relativistic particles and isometric embeddings

    Get PDF
    It is considered, in the framework of constrained systems, the quantum dynamics of non-relativistic particles moving on a d-dimensional Riemannian manifold M isometrically embedded in Rd+nR^{d+n}. This generalizes recent investigations where M has been assumed to be a hypersurface of Rd+1R^{d+1}. We show, contrary to recent claims, that constrained systems theory does not contribute to the elimination of the ambiguities present in the canonical and path integral formulations of the problem. These discrepancies with recent works are discussed.Comment: Revtex, 14 page

    Operation of solar cell arrays in dilute streaming plasmas

    Get PDF
    Operation of solar cell arrays in dilute streaming plasma

    Ferromagnetic Properties of ZrZn2_2

    Full text link
    The low Curie temperature (T_C approx 28K) and small ordered moment (M_0 approx 0.17 mu_B f.u.^-1) of ZrZn2 make it one of the few examples of a weak itinerant ferromagnet. We report results of susceptibility, magnetization, resistivity and specific heat measurements made on high-quality single crystals of ZrZn2. From magnetization scaling in the vicinity of T_C (0.001<|T-T_C|/T_C<0.08), we obtain the critical exponents beta=0.52+/-0.05 and delta=3.20+/-0.08, and T_C=27.50+/-0.05K. Low-temperature magnetization measurements show that the easy axis is [111]. Resistivity measurements reveal an anomaly at T_C and a non-Fermi liquid temperature dependence rho(T)=rho_0+AT^n, where n=1.67+/-0.02, for 1<T<14K. The specific heat measurements show a mean-field-like anomaly at T_C. We compare our results to various theoretical models.Comment: submitted to PR

    Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe2_{\bf 2}

    Full text link
    Ferroelectrics with spontaneous electric polarization play an essential role in today's device engineering, such as capacitors and memories. Their physical properties are further enriched by suppressing the long-range polar order, as is exemplified by quantum paraelectrics with giant piezoelectric and dielectric responses at low temperatures. Likewise in metals, a polar lattice distortion has been theoretically predicted to give rise to various unusual physical properties. So far, however, a "ferroelectric"-like transition in metals has seldom been controlled and hence its possible impacts on transport phenomena remain unexplored. Here we report the discovery of anomalous enhancement of thermopower near the critical region between the polar and nonpolar metallic phases in 1T'-Mo1−x_{1-x}Nbx_{x}Te2_2 with a chemically tunable polar transition. It is unveiled from the first-principles calculations and magnetotransport measurements that charge transport with strongly energy-dependent scattering rate critically evolves towards the boundary to the nonpolar phase, resulting in large cryogenic thermopower. Such a significant influence of the structural instability on transport phenomena might arise from the fluctuating or heterogeneous polar metallic states, which would pave a novel route to improving thermoelectric efficiency.Comment: 26 pages, 4 figure

    Stationary Rotating Strings as Relativistic Particle Mechanics

    Get PDF
    Stationary rotating strings can be viewed as geodesic motions in appropriate metrics on a two-dimensional space. We obtain all solutions describing stationary rotating strings in flat spacetime as an application. These rotating strings have infinite length with various wiggly shapes. Averaged value of the string energy, the angular momentum and the linear momentum along the string are discussed.Comment: 20pages, 7 figure
    • …
    corecore