44,467 research outputs found
Input-output theory for spin-photon coupling in Si double quantum dots
The interaction of qubits via microwave frequency photons enables
long-distance qubit-qubit coupling and facilitates the realization of a
large-scale quantum processor. However, qubits based on electron spins in
semiconductor quantum dots have proven challenging to couple to microwave
photons. In this theoretical work we show that a sizable coupling for a single
electron spin is possible via spin-charge hybridization using a magnetic field
gradient in a silicon double quantum dot. Based on parameters already shown in
recent experiments, we predict optimal working points to achieve a coherent
spin-photon coupling, an essential ingredient for the generation of long-range
entanglement. Furthermore, we employ input-output theory to identify observable
signatures of spin-photon coupling in the cavity output field, which may
provide guidance to the experimental search for strong coupling in such
spin-photon systems and opens the way to cavity-based readout of the spin
qubit
A Coherent Spin-Photon Interface in Silicon
Electron spins in silicon quantum dots are attractive systems for quantum
computing due to their long coherence times and the promise of rapid scaling
using semiconductor fabrication techniques. While nearest neighbor exchange
coupling of two spins has been demonstrated, the interaction of spins via
microwave frequency photons could enable long distance spin-spin coupling and
"all-to-all" qubit connectivity. Here we demonstrate strong-coupling between a
single spin in silicon and a microwave frequency photon with spin-photon
coupling rates g_s/(2\pi) > 10 MHz. The mechanism enabling coherent spin-photon
interactions is based on spin-charge hybridization in the presence of a
magnetic field gradient. In addition to spin-photon coupling, we demonstrate
coherent control of a single spin in the device and quantum non-demolition spin
state readout using cavity photons. These results open a direct path toward
entangling single spins using microwave frequency photons
Wigner-Poisson statistics of topological transitions in a Josephson junction
The phase-dependent bound states (Andreev levels) of a Josephson junction can
cross at the Fermi level, if the superconducting ground state switches between
even and odd fermion parity. The level crossing is topologically protected, in
the absence of time-reversal and spin-rotation symmetry, irrespective of
whether the superconductor itself is topologically trivial or not. We develop a
statistical theory of these topological transitions in an N-mode quantum-dot
Josephson junction, by associating the Andreev level crossings with the real
eigenvalues of a random non-Hermitian matrix. The number of topological
transitions in a 2pi phase interval scales as sqrt(N) and their spacing
distribution is a hybrid of the Wigner and Poisson distributions of
random-matrix theory.Comment: 12 pages, 15 figures; v2 to appear in PRL, with appendix in the
supplementary materia
X-shaped and Y-shaped Andreev resonance profiles in a superconducting quantum dot
The quasi-bound states of a superconducting quantum dot that is weakly
coupled to a normal metal appear as resonances in the Andreev reflection
probability, measured via the differential conductance. We study the evolution
of these Andreev resonances when an external parameter (such as magnetic field
or gate voltage) is varied, using a random-matrix model for the
scattering matrix. We contrast the two ensembles with broken time-reversal
symmetry, in the presence or absence of spin-rotation symmetry (class C or D).
The poles of the scattering matrix in the complex plane, encoding the center
and width of the resonance, are repelled from the imaginary axis in class C. In
class D, in contrast, a number of the poles has zero real
part. The corresponding Andreev resonances are pinned to the middle of the gap
and produce a zero-bias conductance peak that does not split over a range of
parameter values (Y-shaped profile), unlike the usual conductance peaks that
merge and then immediately split (X-shaped profile).Comment: Contribution for the JETP special issue in honor of A.F. Andreev's
75th birthday. 9 pages, 8 figure
Scalable gate architecture for densely packed semiconductor spin qubits
We demonstrate a 12 quantum dot device fabricated on an undoped Si/SiGe
heterostructure as a proof-of-concept for a scalable, linear gate architecture
for semiconductor quantum dots. The device consists of 9 quantum dots in a
linear array and 3 single quantum dot charge sensors. We show reproducible
single quantum dot charging and orbital energies, with standard deviations less
than 20% relative to the mean across the 9 dot array. The single quantum dot
charge sensors have a charge sensitivity of 8.2 x 10^{-4} e/root(Hz) and allow
the investigation of real-time charge dynamics. As a demonstration of the
versatility of this device, we use single-shot readout to measure a spin
relaxation time T1 = 170 ms at a magnetic field B = 1 T. By reconfiguring the
device, we form two capacitively coupled double quantum dots and extract a
mutual charging energy of 200 microeV, which indicates that 50 GHz two-qubit
gate operation speeds are feasible
A Reconfigurable Gate Architecture for Si/SiGe Quantum Dots
We demonstrate a reconfigurable quantum dot gate architecture that
incorporates two interchangeable transport channels. One channel is used to
form quantum dots and the other is used for charge sensing. The quantum dot
transport channel can support either a single or a double quantum dot. We
demonstrate few-electron occupation in a single quantum dot and extract
charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure
valley splittings in the range of 35-70 microeV. By energizing two additional
gates we form a few-electron double quantum dot and demonstrate tunable tunnel
coupling at the (1,0) to (0,1) interdot charge transition.Comment: Related papers at http://pettagroup.princeton.ed
Threshold Dynamics of a Semiconductor Single Atom Maser
We demonstrate a single-atom maser consisting of a semiconductor double
quantum dot (DQD) that is embedded in a high quality factor microwave cavity. A
finite bias drives the DQD out of equilibrium, resulting in sequential single
electron tunneling and masing. We develop a dynamic tuning protocol that allows
us to controllably increase the time-averaged repumping rate of the DQD at a
fixed level detuning, and quantitatively study the transition through the
masing threshold. We further examine the crossover from incoherent to coherent
emission by measuring the photon statistics across the masing transition. The
observed threshold behavior is in agreement with an existing single atom maser
theory when small corrections from lead emission are taken into account
- …