44,041 research outputs found

    Input-output theory for spin-photon coupling in Si double quantum dots

    Full text link
    The interaction of qubits via microwave frequency photons enables long-distance qubit-qubit coupling and facilitates the realization of a large-scale quantum processor. However, qubits based on electron spins in semiconductor quantum dots have proven challenging to couple to microwave photons. In this theoretical work we show that a sizable coupling for a single electron spin is possible via spin-charge hybridization using a magnetic field gradient in a silicon double quantum dot. Based on parameters already shown in recent experiments, we predict optimal working points to achieve a coherent spin-photon coupling, an essential ingredient for the generation of long-range entanglement. Furthermore, we employ input-output theory to identify observable signatures of spin-photon coupling in the cavity output field, which may provide guidance to the experimental search for strong coupling in such spin-photon systems and opens the way to cavity-based readout of the spin qubit

    A Coherent Spin-Photon Interface in Silicon

    Full text link
    Electron spins in silicon quantum dots are attractive systems for quantum computing due to their long coherence times and the promise of rapid scaling using semiconductor fabrication techniques. While nearest neighbor exchange coupling of two spins has been demonstrated, the interaction of spins via microwave frequency photons could enable long distance spin-spin coupling and "all-to-all" qubit connectivity. Here we demonstrate strong-coupling between a single spin in silicon and a microwave frequency photon with spin-photon coupling rates g_s/(2\pi) > 10 MHz. The mechanism enabling coherent spin-photon interactions is based on spin-charge hybridization in the presence of a magnetic field gradient. In addition to spin-photon coupling, we demonstrate coherent control of a single spin in the device and quantum non-demolition spin state readout using cavity photons. These results open a direct path toward entangling single spins using microwave frequency photons

    Wigner-Poisson statistics of topological transitions in a Josephson junction

    Get PDF
    The phase-dependent bound states (Andreev levels) of a Josephson junction can cross at the Fermi level, if the superconducting ground state switches between even and odd fermion parity. The level crossing is topologically protected, in the absence of time-reversal and spin-rotation symmetry, irrespective of whether the superconductor itself is topologically trivial or not. We develop a statistical theory of these topological transitions in an N-mode quantum-dot Josephson junction, by associating the Andreev level crossings with the real eigenvalues of a random non-Hermitian matrix. The number of topological transitions in a 2pi phase interval scales as sqrt(N) and their spacing distribution is a hybrid of the Wigner and Poisson distributions of random-matrix theory.Comment: 12 pages, 15 figures; v2 to appear in PRL, with appendix in the supplementary materia

    X-shaped and Y-shaped Andreev resonance profiles in a superconducting quantum dot

    Get PDF
    The quasi-bound states of a superconducting quantum dot that is weakly coupled to a normal metal appear as resonances in the Andreev reflection probability, measured via the differential conductance. We study the evolution of these Andreev resonances when an external parameter (such as magnetic field or gate voltage) is varied, using a random-matrix model for the N×NN\times N scattering matrix. We contrast the two ensembles with broken time-reversal symmetry, in the presence or absence of spin-rotation symmetry (class C or D). The poles of the scattering matrix in the complex plane, encoding the center and width of the resonance, are repelled from the imaginary axis in class C. In class D, in contrast, a number N\propto\sqrt{N} of the poles has zero real part. The corresponding Andreev resonances are pinned to the middle of the gap and produce a zero-bias conductance peak that does not split over a range of parameter values (Y-shaped profile), unlike the usual conductance peaks that merge and then immediately split (X-shaped profile).Comment: Contribution for the JETP special issue in honor of A.F. Andreev's 75th birthday. 9 pages, 8 figure

    Scalable gate architecture for densely packed semiconductor spin qubits

    Full text link
    We demonstrate a 12 quantum dot device fabricated on an undoped Si/SiGe heterostructure as a proof-of-concept for a scalable, linear gate architecture for semiconductor quantum dots. The device consists of 9 quantum dots in a linear array and 3 single quantum dot charge sensors. We show reproducible single quantum dot charging and orbital energies, with standard deviations less than 20% relative to the mean across the 9 dot array. The single quantum dot charge sensors have a charge sensitivity of 8.2 x 10^{-4} e/root(Hz) and allow the investigation of real-time charge dynamics. As a demonstration of the versatility of this device, we use single-shot readout to measure a spin relaxation time T1 = 170 ms at a magnetic field B = 1 T. By reconfiguring the device, we form two capacitively coupled double quantum dots and extract a mutual charging energy of 200 microeV, which indicates that 50 GHz two-qubit gate operation speeds are feasible

    A Reconfigurable Gate Architecture for Si/SiGe Quantum Dots

    Full text link
    We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots and the other is used for charge sensing. The quantum dot transport channel can support either a single or a double quantum dot. We demonstrate few-electron occupation in a single quantum dot and extract charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure valley splittings in the range of 35-70 microeV. By energizing two additional gates we form a few-electron double quantum dot and demonstrate tunable tunnel coupling at the (1,0) to (0,1) interdot charge transition.Comment: Related papers at http://pettagroup.princeton.ed

    Threshold Dynamics of a Semiconductor Single Atom Maser

    Full text link
    We demonstrate a single-atom maser consisting of a semiconductor double quantum dot (DQD) that is embedded in a high quality factor microwave cavity. A finite bias drives the DQD out of equilibrium, resulting in sequential single electron tunneling and masing. We develop a dynamic tuning protocol that allows us to controllably increase the time-averaged repumping rate of the DQD at a fixed level detuning, and quantitatively study the transition through the masing threshold. We further examine the crossover from incoherent to coherent emission by measuring the photon statistics across the masing transition. The observed threshold behavior is in agreement with an existing single atom maser theory when small corrections from lead emission are taken into account
    corecore