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1 1. INTRODUCTION

Half a century has passed since Alexander Andreev
reported the curious retro�reflection of electrons at
the interface between a normal metal and a supercon�
ductor [1]. One reason why Andreev reflection is still
very much a topic of active research is the recent inter�
est in Majorana zero modes [2]: nondegenerate bound
states at the Fermi level (E = 0) consisting of a coher�
ent superposition of electrons and holes, coupled via
Andreev reflection. These observed in the differential
conductance as a resonant peak around zero bias volt�
age V that does not split upon variation of a magnetic
field B [3–6]. In the (B, V) plane, the conductance
peaks trace out an unusual Y�shaped profile, distinct
from the more common X�shaped profile of peaks that
meet and immediately split again (see Fig. 1).

It is tempting to think that the absence of a splitting
of the zero�bias conductance peak demonstrates that
the quasi�bound state is nondegenerate, and hence
Majorana. This is mistaken. As shown in a computer
simulation [7], the Y�shaped conductance profile is
generic for superconductors with broken spin�rotation
and broken time�reversal symmetry, irrespective of the
presence or absence of Majorana zero modes. The
theoretical analysis in [7] focused on the ensemble�
averaged conductance peak, in the context of the weak
antilocalization effect [8–11]. Here, we analyze the

1 The article is published in the original.

sample�specific conductance profile, by relating the
X�shape and Y�shape to different configurations of
poles of the scattering matrix in the complex energy
plane [12].

2. ANDREEV BILLIARD

2.1. Scattering Resonances

We study the Andreev billiard geometry shown in
Fig. 2: a semiconductor quantum dot strongly coupled
to a superconductor and weakly coupled to a normal
metal. In the presence of time�reversal symmetry, an
excitation gap is induced in the quantum dot by the
proximity effect [13]. We assume that the gap is closed
by a sufficiently strong magnetic field. Quasi�bound
states can then appear near the Fermi level (E = 0),
described by the Hamiltonian

(1)

The bound states in the closed quantum dot are eigen�
values of the M × M Hermitian matrix H = H†. The
M × N matrix W couples the basis states |μ〉 in the
quantum dot to the normal metal, via N propagating
modes |a〉 through a point contact. In principle, we
should take the limit M  ∞, but in practice M � N
suffices.

� μ| 〉Hμν ν〈 |
μ ν,

∑ μ| 〉Wμa a〈 |+ a| 〉Wμa* μ〈 |( ).

μ a,

∑+=
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The amplitudes of incoming and outgoing modes
in the point contact at an energy E (relative to the
Fermi level) are related by the N × N scattering matrix
[14, 15]

(2)

This is a unitary matrix, S(E)S†(E) = 1.

A scattering resonance corresponds to a pole ε =
E – iγ of the scattering matrix in the complex energy
plane, which is an eigenvalue of the non�Hermitian
matrix

(3)

The positive definiteness of WW† ensures that the
poles all lie in the lower half of the complex plane, γ ≥
0, as required by causality. Particle–hole symmetry
implies that ε and –ε* are both eigenvalues of Heff, and
hence the poles are symmetrically arranged around
the imaginary axis.

The differential conductance G(V) = dI/dV of the
quantum dot, measured by grounding the supercon�

S E( ) 1 2πiW† H iπWW†– E–( )
1–
W.+=

Heff H iπWW†
.–=

ductor and applying a bias voltage to the normal metal,
is obtained from the scattering matrix via [7]

(4)

in the electron�hole basis, and via 

(5)

in the Majorana basis. The Pauli matrices τy and τz act
on the electron–hole degree of freedom. The two
bases are related by the unitary transformation

(6)

2.2. Gaussian Ensembles

For a random�matrix description, we assume that
the scattering in the quantum dot is chaotic, and that
this applies to normal scattering from the electrostatic
potential as well as to Andreev scattering from the pair
potential. In the large�M limit, we can then take a
Gaussian distribution for H,

(7)

By taking the matrix elements of H to be real, com�
plex, or quaternion numbers (in an appropriate basis),
one obtains the Wigner–Dyson ensembles of nonsu�
per�conducting chaotic billiards [16–19]. Particle�
hole symmetry then plays no role, because normal
scattering does not couple electrons and holes.

Altland and Zirnbauer introduced the particle�hole
symmetric ensembles appropriate for an Andreev bil�

G V( ) e2

N
��� N

2
��� 1

2
��TrS eV( )τzS

† eV( )τz– ,=

G V( ) e2

N
��� N

2
��� 1

2
��TrS eV( )τyS† eV( )τy– ,=

S � USU†
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�� 1 1
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Fig. 1. Left panel: Magnetic field B�dependence of peaks in the differential conductance G = dI/dV. The peak positions trace out
an X�shaped or Y�shaped profile in the (B, V) plane. Right panel: Location of the poles of the scattering matrix S(ε) in the complex
energy plane ε = E – iγ. The arrows indicate how the poles move with increasing magnetic field.
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Normal
metal

Quantum dot

Superconductor

Fig. 2. Schematic illustration of an Andreev billiard.
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liard [20]. The two ensembles without time�reversal
symmetry are obtained by taking the matrix elements
of i × H (instead of H itself) to be real or quaternion.
When iH is real, there is only particle–hole symmetry
(class D), while when iH is quaternion, there is parti�
cle–hole and spin�rotation symmetry (class C).

Both the Wigner–Dyson (WD) and the Altland–
Zirnbauer (AZ) ensembles are characterized by a
parameter β ∈ {1, 2, 4} that describes the strength of
the level repulsion factor in the probability distribution

of distinct eigenvalues Ei of H: a factor 

in the WD ensembles and a factor  in

the AZ ensembles. (The prime indicates that the prod�
uct includes only the positive eigenvalues.)

In the WD ensembles, the parameter β also counts
the number of degrees of freedom of the matrix ele�
ments of H: β = 1, 2, 4 when H is real, complex, or
quaternion, respectively. In the AZ ensembles, this
connection is lost: β = 2 in the class C ensemble (iH
real) as well as in the class D ensemble (iH quater�
nion).

The coefficient c can be related to the average spac�
ing δ0 of distinct eigenvalues of H in the bulk of the
spectrum,

(8)

The coefficient in Eq. (8) for the AZ ensembles is
twice as small as it is in the WD ensembles with the
same β, on account of the ±E symmetry of the spec�
trum (see Appendix A).

Because the distribution of H is basis independent,
we can without loss of generality choose a basis such
that the coupling matrix W is diagonal,

(9)

The coupling strength wn is related to the tunnel prob�
ability Γn ∈ (0, 1) of mode n into the quantum dot by
[14, 15]

(10)

2.3. Class C and D Ensembles

We summarize the properties of the β = 2 AZ ensem�
bles, symmetry class C and D, that we need for our
study of the Andreev resonances. (See Appendix B for
the corresponding β = 1, 4 formulas in symmetry classes
CI and DIII.) Similar formulas can be found in [21].

When Andreev scattering operates together with
spin�orbit coupling, we can combine electron and
hole degrees of freedom from the same spin band into
a real basis of Majorana fermions. (This change of
basis amounts to the unitary transformation in

Ei Ej– β

i j<∏
Ei

2 Ej
2–
β

i j<
'∏

c βπ2

8δ0
2

�������
2 in the WD ensembles,

1 in the AZ ensembles.⎩
⎨
⎧

=

Wmn wnδmn, 1 m M, 1 n N.≤ ≤ ≤≤=

wn
2 Mδ0

π2Γn

��������� 2 Γn– 2 1 Γn––( ).=

Eq. (6).) In the Majorana basis, the constraint of par�
ticle�hole symmetry is given simply by

(11)
and we can therefore take H = iA with A a real antisym�
metric matrix. In the Gaussian ensemble, the upper�
diagonal matrix elements Anm (n < m) all have identical
and independent distributions,

(12)

(see Eqs. (7) and (8)). This is the β = 2 class�D ensem�
ble, without spin�rotation symmetry.

The β = 2 class�C ensemble applies in the absence
of spin�orbit coupling, when spin�rotation symmetry
is preserved. Andreev reflection from a spin�singlet
superconductor couples only electrons and holes from
different spin bands, which cannot be combined into a
real basis state. It is then more convenient to stay in the
electron�hole basis and to eliminate the spin degree of
freedom by considering a single spin band for the elec�
tron and the opposite spin band for the hole. (The
matrix dimensionality M and the mean level spacing δ0
then refer to a single spin.) In this basis, the particle–
hole symmetry requires that

(13)

where the Pauli matrix τy operates on the electron and
hole degrees of freedom.

Constraint (13) implies that H = iQ with Q a
quaternion anti�Hermitian matrix. Its matrix ele�
ments are of the form

(14)

with real coefficients a, b, c, d (to ensure that Qnm =

τy τy). The anti�Hermiticity of Q requires the off�
diagonal elements to be related by anm = –amn and
xnm = xmn for x ∈ {b, c, d}. On the diagonal, ann = 0. In
the Gaussian ensemble, the independent matrix ele�
ments have the distribution

(15)

3. ANDREEV RESONANCES

3.1. Accumulation on the Imaginary Axis

In Fig. 3, we show the location of the poles of the
scattering matrix in the complex energy plane, for the
β = 2 AZ ensembles with and without spin�rotation
symmetry (class C and D, respectively). The β = 2 WD
ensemble (class A, complex H) is included for com�

H H*,–=

P Anm{ }( )
π2Anm

2

2Nδ0
2

�����������–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp
1 n m<=

M

∏∝

H τyH*τy,–=

Qnm anmτ0 ibnmτx icnmτy idnmτz,+ + +=

n m, 1 2… M/2,,,=

Qnm*

P Qnm{ }( ) π2

2Mδ0
2

����������� bnn
2 cnn

2 dnn
2+ +( )–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp

n 1=

M/2

∏∝

× π2

Mδ0
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�������� ann
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parison. The poles are eigenvalues ε of the non�Her�
mitian effective Hamiltonian (1), with H distributed
according to the Gaussian distribution (7), (8), β = 2,
and the coupling matrix W given by Eqs. (9), (10). For
simplicity, we took identical tunnel probabilities Γn ≡ Γ
for each of the N modes connecting the quantum dot
to the normal metal.

The number M of basis states in the quantum dot is
taken much larger than N, to reach the random�matrix
regime. In class C, this number is necessarily even, as
demanded by the particle�hole symmetry relation (13).
The symmetry relation (11) in class D imposes no such
constraint, and when M is odd, there is an unpaired
Majorana zero mode in the spectrum [21]2 The class�
D superconductor with a Majorana zero mode is called
topologically nontrivial, while a class�C or class�D
superconductor without a zero mode is called topolog�
ically trivial [22–24]. For a more direct comparison of
class C and class D, we take M even in both cases, and
hence both superconductors are topologically trivial.

In the absence of particle�hole symmetry (class A),
the poles ε = E – iγ of the scattering matrix have the
density [25]

(16)

2 Since Majorana zero modes always appear in pairs, the change
from M even to M odd necessarily involves some external system
that can absorb one of the two modes. For example, this could
be a nanowire coupled at one end to the quantum dot, such that
the Majorana zero mode inside the quantum dot is paired with
the zero mode at the other end of the wire. At the transition
from M odd to even, the two Majorana modes merge because the
gap in the nanowire closes.

ρ E γ,( ) N

4πγ2
���������, γmin γ γmax,< <=

(17)

for |E| � Mδ0 and asymptotically in the limit N,
M/N  ∞. For |E| � δ0, all three β = 2 ensembles A,
C, D have a similar density of poles, but for smaller |E|,
the densities are strikingly different, see Fig. 2. In class
C, the poles are repelled from the imaginary axis, but
in class D, they accumulate on that axis.

As pointed out in [12], a nondegenerate pole ε =
⎯iγ on the imaginary axis has a certain stability: it can�
not acquire a nonzero real part E without breaking the
ε  –ε* symmetry imposed by particle–hole conju�
gation. To see why this stability is not operative in class
C, we note that on the imaginary axis, γ is a real eigen�
value of the matrix

in class C, (18)

in class D. (19)

In both classes, the matrix Ω commutes with an anti�
unitary operator, �Ω = Ω�, with � = iτy� in class C
and � = � in class D. (The operator � performs a
complex conjugation.) In class C, this operator �
squares to –1, so a real eigenvalue γ of Ω has a Kramers
degeneracy3 and hence nondegenerate poles ε = –iγ
on the imaginary axis are forbidden. In class D, in
contrast, the operator � squares to +1, Kramers

3 The usual Kramers degeneracy refers to the eigenvalues of a
Hermitian matrix that commutes with an anti�unitary operator
squaring to –1. Here the matrix is not Hermitian, but the degen�
eracy still applies to real eigenvalues.

γmin NΓδ0/4π, γmax γmin/ 1 Γ–( ),= =

Ω Q πWW†+–=

Ω A πWW†+–=

0

−100
0

−1.6
−1 0 1 −1 −10 01 1

E/δ0

−
γ/
δ

0
−
γ/
δ

0

E/δ0 E/δ0

class D class C class A

Γ
 =

 0
.2

Γ
 =

 1

Fig. 3. Scatter plot of the poles ε = E – iΓ of 5000 scattering matrices S(ε), in the Gaussian ensembles of class D, C, and A (first,
second, and third column), for ballistic coupling (Γ = 1, first row) and for tunnel coupling (Γ = 0.2, second row). In each case,
the Hamiltonian has dimension M × M = 500 × 500 and the scattering matrix, N × N = 50 × 50. Only a narrow energy range near
E = 0 is shown, to contrast the accumulation of poles on the imaginary axis in class D and the repulsion in class C. The horizontal
lines indicate the expected boundaries (17) of the class�A scatter plot in the limit N, M/N  ∞.
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degeneracy is inoperative, and nondegenerate poles
are allowed and in fact generic.

3.2. Square�Root Law

As we explain in Appendix C, for ballistic coupling
(Γ = 1), the statistics of poles on the imaginary axis can
be mapped onto the statistics of the real eigenvalues of
an M × M random orthogonal matrix with N rows and
columns deleted; this is a solved problem [26, 27]. The
linear density profile ρ0(γ) on the imaginary axis is

(20)

for 1 � NΓ � M and γmin, γmax given by Eq. (17). We
conjecture that this density profile, derived [26] for
Γ = 1, holds also for Γ < 1. In Fig. 4, we give numerical
evidence in support of this conjecture.

In Fig. 5, we show how the average number 〈NY〉
of class�D poles on the imaginary axis depends on
the dimensionality N of the scattering matrix and on
the tunnel probability Γ. We compare with the
square�root law4 

(21)

implied by integration of our conjectured density pro�

file (20). This  scaling is generic for random�
matrix ensembles that exhibit accumulation of eigen�
values on the real or imaginary axis, such as the Gini�

4 The logarithmic divergence in Eq. (21) for Γ = 1 is cut�off by the
finite dimension M of the Hamiltonian, such that 〈NY〉 ≈ N1/2

ln(M/N) for ballistic coupling. This spurious M�dependence
does not exist for Γ < 1.

ρ0 γ( ) NΓ
8π
������1

γ
��, γmin γ γmax,< <=

NY〈 〉 NΓ
8π
������ 1 Γ–( )ln–=

N

bre ensemble [28–30] (real Gaussian matrices without

any symmetry) and the Hamilton ensemble [31]5

(matrices of the form � = HJ with H a symmetric real

Gaussian matrix and J =  a fixed anti�sym�

metric matrix). Figure 5 shows that the Andreev reso�
nances follow the same square�root law.

4. X�SHAPED AND Y�SHAPED 
CONDUCTANCE PROFILES

In [7], it was found in a computer simulation of a
superconducting InSb nanowire that the conductance
resonances trace out two distinct profiles in the volt�
age�magnetic�field plane: an X�shape or a Y�shape. In
the X�shaped profile, a pair of conductance reso�
nances merges and immediately splits again upon vari�
ation of the voltage V or magnetic field B. In the Y�
shaped profile, a pair of peaks merges at V = 0 and then
stays pinned to zero voltage over a range of magnetic
field values. Here, we wish to relate this phenomenol�
ogy to the parametric evolution of poles of the scatter�
ing matrix in the complex energy plane [12].

5 The supplement to this paper (an appendix in arXiv:1305.2924)
contains an overview of the square�root law in a variety of ran�
dom�matrix ensembles.

0 1

1– 0⎝ ⎠
⎜ ⎟
⎛ ⎞

ln(γ/δ0)

−4

1 32

0
lnρ

−8

ρ ∝ γ−2

ρ ∝ γ−1

Fig. 4. Double�logarithmic plot of the probability distribu�
tion ρ(γ), normalized to unity, of the imaginary part γ
of the poles of the scattering matrix. The curves are cal�
culated by averaging over some 2000 realizations of the
class�D ensemble, with N = 10, M = 500, Γ = 0.9. The
dashed curve includes all poles, while the blue solid curve
includes only the poles on the imaginary axis (E = 0). The
black dotted lines are the predicted slopes from Eqs. (16)
and (20).

4

3

2

1

0 1 2 3

0.3 0.5 0.7 0.9
Γ

NY

−(NΓ/8π)1/2 ln(1 − Γ)

Fig. 5. Average of the number NY of poles on the imaginary
axis for an N × N scattering matrix S(ε) in symmetry
class D. Degree of grey distinguishes different tunnel cou�
plings Γ < 1, and N is increased together with M = 80N.
The slope of the dashed line is the large�N asymptote (21).
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For that purpose, we introduce a parameter depen�
dence in the Hamiltonian H of the Andreev billiard,

(22)

and calculate the differential conductance as a func�
tion of V and α. We work in symmetry class D (broken
time�reversal and broken spin�rotation symmetry),
and hence H0 and H1 are purely imaginary antisym�
metric matrices (in the Majorana basis). We draw
them from the Gaussian distribution (12). The scatter�
ing matrix Sα, obtained from Hα via Eq. (2), gives the
differential conductance G(V, α) via Eq. (5). For each
α, we also compute the poles ε = E – iγ of S(ε) in the
complex energy plane.

Figure 6 shows a typical realization where the
number NY of conductance poles on the imaginary
axis switches between zero and two as a varies in the
interval [0, 1]. The color�scale plot shows G(V, α),
while the dots trace out the projection of the poles of
Sα(ε) on the real axis. Labels X and Y indicate the two

Hα 1 α–( )H0 αH1,+=

types of profiles, and Fig. 7 shows the corresponding
conductance peaks and scattering matrix poles.

Inspection of the figures shows that the X�shaped
profile appears when two scattering matrix poles cross
when projected onto the real axis. (They do not cross
in the complex energy plane.) The Y�shaped profile
appears when NY jumps by two.

CONCLUSIONS

For a closed superconducting quantum dot, the
distinction between topologically trivial and nontrivial
is the absence or presence of a level pinned to the mid�
dle of the gap (a Majorana zero mode). When the
quantum dot is connected to a metallic reservoir, the
bound states become quasi�bound, E � E – iγ, with a
finite lifetime �/2γ. The distinction between topologi�
cally trivial and nontrivial then reduces to whether the
number NY of quasi�bound states with E = 0 is even or
odd.

Two types of transitions can be distinguished [12]:
At a topological phase transition, NY changes by ±1
(see Footnote 2)). At a “pole transition”, NY changes
by ±2. Both types of transitions produce the same
Y�shaped conductance profile of two peaks that merge
and stick together for a range of parameter values—
distinct from the X�shaped profile that occurs without
a change in NY.

There is a variety of methods to distinguish the pole
transition from the topological phase transition [7]:

since NY ≈ Γ3/2  for Γ � 1, one way to suppress the
pole transitions is to couple the metal to the supercon�
ductor via a small number of modes N with a small
transmission probability Γ. The pole transitions are a

N

0.3 0.9 1.5 2.1 2.7
G, e2/h

1

0
1 0 −1

Y3

Y2

Y1

X

E, δ0

α

Fig. 6. Parametric evolution of the differential conduc�
tance G(V, α) (grey scale) and the real part E of the poles
of the scattering matrix Sα(ε). These are results for a single
realization of the class D ensemble with M = 120, N = 6,
and Γ = 0.3.

−1 0 1 −1 0 1E/δ0

−1

0

0

3
−1 0 1 −1 0 1

eV/δ0

X Y1 Y2 Y3

−
γ/
δ

0
G

, 
e2 /h

Fig. 7. Four cuts through the parametric evolution in
Fig. 6, showing the differential conductance G = dI/dV
(top row) and scattering matrix poles ε = E – iγ (bottom
row).
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sample�specific effect, while the topological phase
transition is expected to be less sensitive to micro�
scopic details of the disorder. We do not therefore
expect the pole transitions to reproduce in the same
sample upon thermal cycling. If we can measure from
both ends of a nanowire, we might search for correla�
tions between the conductance peaks at the two ends.
The Majorana zero modes come in pairs, one at each
end, and hence there should be a correlation in the
conductance peaks measured at the two ends, which
we would not expect to be there for the peaks due to
the pole transition.

This research was supported by the Foundation for
Fundamental Research on Matter (FOM), the Neth�
erlands Organization for Scientific Research
(NWO/OCW), an ERC Synergy Grant, and the China
Scholarship Council.

APPENDIX A

FACTOR�OF�TWO DIFFERENCE 
IN THE CONSTRUCTION OF GAUSSIAN 

ENSEMBLES WITH OR WITHOUT 
PARTICLE–HOLE SYMMETRY

As we discussed in Section 2.2, in the Gaussian
ensembles of random�matrix theory, the Hermitian
M × M matrix H has the distribution

(A.1a)

(A.1b)

In each ensemble, δ0 refers to the average spacing of
distinct eigenvalues of H in the bulk of the spectrum.
For β = 4, the eigenvalues have a twofold Kramers
degeneracy, so there are only M0 = M/2 distinct eigen�
values, while for β = 1, 2, all the M0 = M eigenvalues
are distinct (disregarding spin degeneracy).

We have experienced that the factor�of�two differ�
ence in the coefficient between the WD and AZ
ensembles is a source of confusion. Here, we hope to
resolve this confusion by pointing to its origin, which
is the ±E symmetry of the spectrum in the AZ ensem�
bles (and also in the chiral ensembles, which we
include for completeness). The calculation of the
coefficient c is a bit lengthy, with factors of two appear�
ing at different places before the final factor remains,
but we have not found a much shorter and convincing
argument for the difference.

P H( ) c
M
����TrH2–⎝ ⎠

⎛ ⎞ ,exp∝

c βπ2

8δ0
2

�������

2 in the WD ensembles,

1 in the AZ ensembles,

1 in the chiral ensembles.⎩
⎪
⎨
⎪
⎧

=

The eigenvalue distribution in the WD ensembles is
[16–18]

(A.2)

where the indices i, j, k range over the M0 distinct
eigenvalues.

In the AZ ensembles, an eigenvalue at +E has a
partner at –E, which is a distinct eigenvalue if E ≠ 0.
For the average level spacing in the bulk of the spec�
trum, the existence of a level pinned at E = 0 is irrele�
vant, and we therefore assume that there are no such
zero modes. (This requires M0 even.) The eigenvalue
distribution then has the form [20, 21]

(A.3)

where the indices i, j, k now range only over the M0/2
distinct positive eigenvalues. There is a new exponent
α ∈ {0, 1, 2} that governs the repulsion between eigen�
values related by the ±E symmetry. This factor |Ek|α

only affects the first few levels around E = 0, and we
can therefore ignore it for a calculation of the average
level spacing in the bulk of the spectrum, effectively
setting α  0.

The two distributions (A.2) and (A.3) can be writ�
ten in the same form with the help of the microscopic
level density

(A.4)

defined for each set of M0 distinct energy levels. At the
mean�field level, sufficient for a calculation of the
density of states in the large�M limit, we can assume
that ρ(E) is a smooth function of E (Coulomb gas
model [16]).

The eigenvalue distribution has the form of a Gibbs
distribution P ∝ exp(–βU), with the energy functional

(A.5)

for the WD ensembles and
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1 i j<=

M0/2

∏∝
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�����Ek
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(A.6)

for the AZ ensembles (at α = 0). In the second equal�
ity, we used the ±E symmetry ρ(E) = ρ(–E).

The mean�field density of states ρ(E) minimizes U
with the normalization constraint

(A.7)

The normalization constraint is the same in the WD
and AZ ensembles, but the minimization condition is
different:

(A.8)

(A.9)

The ±E symmetry does not introduce an additional

constraint on (E), since Eq. (A.9) automatically
produces an even density.

The solution of this integral equation gives the
familiar semi�circular density of states [16]

(A.10)

(A.11)

The mean level spacing near E = 0 is δ0 = 1/ (0),
leading to

(A.12)
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1
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1
2
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⎪
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⎪
⎧

=

which amounts to Eq. (A.1b). We note that the addi�
tional factor�of�two arises solely from the ±E symme�
try of the spectrum, and it is therefore irrelevant
whether this is a consequence of particle–hole sym�
metry or of chiral symmetry.

To check that we have not missed a factor of two, in
Fig. 8, we show the numerical result of averaging over
a large number of random Hamiltonians in each of the
four AZ ensembles. The semi�circular density of states
(A.11) applies away from the band center, with the
expected limit ρ × δ0  1 near E = 0.

In Fig. 8, we also see the anomalies at band center
that we ignored in our calculation. Without a zero
mode (ν = 0), the density of states vanishes as |E|α with
α = 2 in class C and α = 1 in class CI and DIII [20]. In
class D, we have α = 0, which means that the ±E pairs
of energy levels do not repel at the band center. The
density of states then has a quadratic peak at E = 0.
The delta�function peak of a zero mode has also an
effect on the smooth part of the density of states,
which for ν = 1 vanishes as |E|α + β, as E2 in class D, and
as |E|5 in class DIII [21].

APPENDIX B

ALTLAND–ZIRNBAUER ENSEMBLES WITH 
TIME�REVERSAL SYMMETRY

For completeness and reference, we record the β =
1, 4 counterparts of the β = 2 formulas (12) and (15).
These are the AZ symmetry classes CI β = 1, time�
reversal with spin�rotation symmetry) and DIII (β =
4, time�reversal without spin�rotation symmetry)
[20]. The time�reversal symmetry conditions on the
Hamiltonian matrix are

(B.1)

The Pauli matrix σy acts on the spin degree of freedom:
the Pauli matrices τi, we used previously acted on the
electron�hole degree of freedom.

A compact representation can be given if we use the
electron–hole basis for β = 1 and the Majorana basis
for β = 4. The matrix elements of the Hamiltonian can
then be represented by Pauli matrices:

(B.2)

with real coefficients a, b, c, d. We note that iH for β =
1 is quaternion, and hence this class CI ensemble is a
subset of the class C ensemble. Similarly, because iH is
real for β = 4, this class DIII ensemble is a subset of
class D.

The Hermiticity of H requires that the off�diagonal
elements are related by anm = amn, bnm = bmn, cnm =
⎯cmn, and dnm = –dmn. On the diagonal, cnn = dnn = 0.
The indices n,m range from 1 to M/2, for an M × M
matrix H. (The dimensionality is necessarily even to
accomodate the Pauli matrices.) For β = 4, there is a

H H* for β 1,= =

H σyH*σy for β 4.= =

Hnm anmτx bnmτz for β+ 1,= =

Hnm icnmσx idnmσz for β+ 4,= =
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twofold Kramers degeneracy of the energy levels, and
therefore only M/2 eigenvalues of H are distinct. For
β = 1, all M eigenvalues are distinct (the spin degener�
acy that exists in class C, CI is not included in M). The
mean level spacing δ0 refers to the distinct eigenvalues.

Combining Eq. (B.2) with Eqs. (7) and (8) gives the
probability distribution of the independent matrix ele�
ments in the Gaussian ensemble:

(B.3)

for β = 1, class CI, and

(B.4)

for β = 4, class DIII.
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APPENDIX C

MAPPING OF THE POLE STATISTICS 
PROBLEM ONTO THE EIGENVALUE 

STATISTICS PROBLEM OF TRUNCATED 
ORTHOGONAL MATRICES

We show how the result in Eq. (20) for the density
profile of imaginary poles of the scattering matrix fol�
lows from the known distribution of real eigenvalues of
truncated orthogonal matrices [26], in the case Γ = 1
of ballistic coupling.

Following [32, 33], we construct the N × N energy�
dependent unitary scattering matrix S(E) in terms of
an M × M energy�independent orthogonal matrix O,

(C.1)

The rectangular N × M matrix � has elements �nm =
δnm and � = 1 – �T�. The M × M Hermitian matrix
H is related to O via a Cayley transform,

(C.2)

Equation (C.2) with O uniformly distributed accord�
ing to the Haar measure in SO(N) produces the Gaus�
sian distribution (7) for H, in the low�energy range

S E( ) �O e
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.=
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πH/Mδ0 i+
πH/Mδ0 i–
������������������������ H⇔
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E/δ0
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Fig. 8. Curves 1, 2: average density of states in the four AZ ensembles, calculated numerically for Hamiltonians of dimension
M × M = 60 × 60 in classes C, CI, and D and M × M = 120 × 120 in class DIII (when each level has a twofold Kramers degeneracy;
ρ and δ0 refer to distinct levels). Curve 1 shows the full semicircle, curve 2 shows the region around E = 0 (horizontally enlarged
by a factor of 20). These are all results for a topologically trivial superconductor, without a zero mode (ν = 0). Curves 3 (labeled
ν = 1) show the effect of a zero mode in class D (M = 61) and class DIII (M = 122). The delta�function peak from the zero mode
itself is not plotted.
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|E| � Nδ0 � Mδ0. Furthermore, in this low�energy
range, scattering matrix (C.1) is related to H by Eq. (2)
with the ballistic coupling matrix W = �T(Mδ0/π2)1/2.

A pole ε = –iγ of S(ε) on the imaginary axis corre�
sponds to a real eigenvalue

(C.3)

of the (M – N) × (M – N) matrix  = �O� obtained
from the orthogonal matrix O by deleting the first N
rows and columns. For M � 1, the x�dependent den�

sity (x) is given by [26]

(C.4)

with B(a, b) being the beta function.

Using Eq. (C.3), we thus arrive for N � M at the γ�
dependent density

(C.5)

Equation (20) with Γ = 1 results if we also assume that
N � 1, such that we can approximate B(N/2, 1/2) ≈
(2π/N)1/2.

REFERENCES 

1. A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964). 

2. M. Silaev and G. E. Volovik, arXiv:1405.1007;
M. Silaev and G. E. Volovik, J. Exp. Theor. Phys. 119
(2014) (in press). 

3. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012). 

4. M. Leijnse and K. Flensberg, Semicond. Sci. Technol.
27, 124003 (2012). 

5. T. D. Stanescu and S. Tewari, J. Phys.: Condens. Matter
25, 233201 (2013). 

6. C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys.
4, 113 (2013). 

7. D. I. Pikulin, J. P. Dahlhaus, M. Wimmer, H. Schom�
erus, and C. W. J. Beenakker, New J. Phys. 14, 125011
(2012). 

8. P. W. Brouwer and C. W. J. Beenakker, Phys. Rev. B:
Condens. Matter 52, 3868 (1995). 

9. A. Altland and M. R. Zirnbauer, Phys. Rev. Lett. 76,
3420 (1996). 

10. P. A. Ioselevich, P. M. Ostrovsky, and M. V. Feigel’man,
Phys. Rev. B: Condens. Matter 86, 035441 (2012). 

11. D. Bagrets and A. Altland, Phys. Rev. Lett. 109, 227005
(2012). 

12. D. I. Pikulin and Yu. V. Nazarov, JETP Lett. 94 (9), 693
(2011); D. I. Pikulin and Yu. V. Nazarov, Phys. Rev. B:
Condens. Matter 87, 235421 (2013). 

13. C. W. J. Beenakker, Lect. Notes Phys. 667, 131 (2005);
C. W. J. Beenakker, arXiv:cond�mat/0406018. 

14. T. Guhr, A. Müller�Groeling, and H. A. Weidenmüller,
Phys. Rep. 299, 189 (1998). 

15. C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997). 

16. M. L. Mehta, Random Matrices (Elsevier, Amsterdam,
The Netherlands, 2004). 

17. P. J. Forrester, Log�Gases and Random Matrices (Princ�
eton University Press, Princeton, New Jersey, United
States, 2010). 

18. The Oxford Handbook of Random Matrix Theory, Ed. by
G. Akemann, J. Baik, and P. Di Francesco (Oxford
University Press, Oxford, (2011). 

19. Y. V. Fyodorov and D. V. Savin, arXiv:1003.0702;
M. R. Zirnbauer, arXiv:1001.0722; C. W. J. Beenakker,
arXiv:0904.1432. 

20. A. Altland and M. R. Zirnbauer, Phys. Rev. B: Con�
dens. Matter 55, 1142 (1997). 

21. D. A. Ivanov, J. Math. Phys. 43, 126 (2002). 

22. S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Lud�
wig, New J. Phys. 12, 065010 (2010). 

23. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010). 

24. X.�L. Qi and S.�C. Zhang, Rev. Mod. Phys. 83, 1057
(2011). 

25. Y. V. Fyodorov and H.�J. Sommers, J. Math. Phys. 38,
1918 (1997). 

26. B. A. Khoruzhenko, H.�J. Sommers, and K. Zycz�
kowski, Phys. Rev. E: Stat., Nonlinear, Soft Matter
Phys. 82, 040106(R) (2010). 

27. P. J. Forrester, J. Stat. Mech. 2010, P12018 (2010). 

28. J. Ginibre, J. Math. Phys. 6, 440 (1965). 

29. N. Lehmann and H.�J. Sommers, Phys. Rev. Lett. 67,
2403 (1991). 

30. A. Edelman, E. Kostlan, and M. Shub, J. Am. Math.
Soc. 7, 247 (1994); A. Edelman, J. Multivariate Anal.
60, 203 (1997). 

31. C. W. J. Beenakker, J. M. Edge, J. P. Dahlhaus,
D. I. Pikulin, S. Mi, and M. Wimmer, Phys. Rev. Lett.
111, 037001 (2013). 

32. P. W. Brouwer, K. M. Frahm, and C. W. J. Beenakker,
Waves Random Media 9, 91 (1999). 

33. M. Marciani, P. W. Brouwer, and C. W. J. Beenakker,
Phys. Rev. B 90, 045403 (2014). 

x e
2πγ/Mδ0–

=

Õ
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