27,866 research outputs found
Understanding the truth about subjectivity
Results of two experiments show children’s understanding of diversity in personal preference is incomplete. Despite acknowledging diversity, in Experiment 1(N=108), 6-
and 8-year-old children were less likely than adults to see preference as a legitimate basis for personal tastes and more likely to say a single truth could be found about a matter of taste. In Experiment 2 (N=96), 7- and 9-year-olds were less likely than 11- and 13-yearolds to say a dispute about a matter of preference might not be resolved. These data suggest that acceptance of the possibility of diversity does not indicate an adult-like understanding of subjectivity. An understanding of the relative emphasis placed on objective and subjective factors in different contexts continues to develop into adolescence
Radiative return at NLO and the measurement of the hadronic cross-section in electron-positron annihilation
Electron-positron annihilation into hadrons plus an energetic photon from
initial state radiation allows the hadronic cross-section to be measured over a
wide range of energies. The full next-to-leading order QED corrections for the
cross-section for e^+ e^- annihilation into a real tagged photon and a virtual
photon converting into hadrons are calculated where the tagged photon is
radiated off the initial electron or positron. This includes virtual and soft
photon corrections to the process e^+ e^- \to \gamma +\gamma^* and the emission
of two real hard photons: e^+ e^- \to \gamma + \gamma + \gamma^*. A Monte Carlo
generator has been constructed, which incorporates these corrections and
simulates the production of two charged pions or muons plus one or two photons.
Predictions are presented for centre-of-mass energies between 1 and 10 GeV,
corresponding to the energies of DAPHNE, CLEO-C and B-meson factories.Comment: 13 pages, 15 figure
Kinetic Monte Carlo simulations of oscillatory shape evolution for electromigration-driven islands
The shape evolution of two-dimensional islands under electromigration-driven
periphery diffusion is studied by kinetic Monte Carlo (KMC) simulations and
continuum theory. The energetics of the KMC model is adapted to the Cu(100)
surface, and the continuum model is matched to the KMC model by a suitably
parametrized choice of the orientation-dependent step stiffness and step atom
mobility. At 700 K shape oscillations predicted by continuum theory are
quantitatively verified by the KMC simulations, while at 500 K qualitative
differences between the two modeling approaches are found.Comment: 7 pages, 6 figure
Electroweak Sudakov Logarithms and Real Gauge-Boson Radiation in the TeV Region
Electroweak radiative corrections give rise to large negative,
double-logarithmically enhanced corrections in the TeV region. These are partly
compensated by real radiation and, moreover, affected by selecting
isospin-noninvariant external states. We investigate the impact of real gauge
boson radiation more quantitatively by considering different restricted final
state configurations. We consider successively a massive abelian gauge theory,
a spontaneously broken SU(2) theory and the electroweak Standard Model. We find
that details of the choice of the phase space cuts, in particular whether a
fraction of collinear and soft radiation is included, have a strong impact on
the relative amount of real and virtual corrections.Comment: 20 pages, 4 figure
- …