1,889 research outputs found

    Origin of transition metal clustering tendencies in GaAs based dilute magnetic semiconductors

    Full text link
    While isovalent doping of GaAs (e.g. by In) leads to a repulsion between the solute atoms, two Cr, Mn, or Fe atoms in GaAs are found to have lower energy than the well-separated pair, and hence attract each other. The strong bonding interaction between levels with t2 symmetry on the transition metal (TM) atoms results in these atoms exhibiting a strong tendency to cluster. Using first-principles calculations, we show that this attraction is maximal for Cr, Mn and Fe while it is minimal for V. The difference is attributed to the symmetry of the highest occupied levels. While the intention is to find possible choices of spintronic materials that show a reduced tendency to cluster, one finds that the conditions that minimize clustering tendencies also minimize the stabilization of the magnetic state.Comment: To appear in Appl. Phys. Let

    Supersymmetric extensions of K field theories

    Full text link
    We review the recently developed supersymmetric extensions of field theories with non-standard kinetic terms (so-called K field theories) in two an three dimensions. Further, we study the issue of topological defect formation in these supersymmetric theories. Specifically, we find supersymmetric K field theories which support topological kinks in 1+1 dimensions as well as supersymmetric extensions of the baby Skyrme model for arbitrary nonnegative potentials in 2+1 dimensions.Comment: Contribution to the Proceedings of QTS7, Prague, August 201

    Extended Supersymmetry and BPS solutions in baby Skyrme models

    Get PDF
    We continue the investigation of supersymmetric extensions of baby Skyrme models in d=2+1 dimensions. In a first step, we show that the CP(1) form of the baby Skyrme model allows for the same N=1 SUSY extension as its O(3) formulation. Then we construct the N=1 SUSY extension of the gauged baby Skyrme model, i.e., the baby Skyrme model coupled to Maxwell electrodynamics. In a next step, we investigate the issue of N=2 SUSY extensions of baby Skyrme models. We find that all gauged and ungauged submodels of the baby Skyrme model which support BPS soliton solutions allow for an N=2 extension such that the BPS solutions are one-half BPS states (i.e., annihilated by one-half of the SUSY charges). In the course of our investigation, we also derive the general BPS equations for completely general N=2 supersymmetric field theories of (both gauged and ungauged) chiral superfields, and apply them to the gauged nonlinear sigma model as a further, concrete example.Comment: 32 pages, Latex fil

    Thermodynamics of the BPS Skyrme model

    Full text link
    One problem in the application of the Skyrme model to nuclear physics is that it predicts too large a value for the compression modulus of nuclear matter. Here we investigate the thermodynamics of the BPS Skyrme model at zero temperature and calculate its equation of state. Among other results, we find that classically (i.e. without taking into account quantum corrections) the compressibility of BPS skyrmions is, in fact, infinite, corresponding to a zero compression modulus. This suggests that the inclusion of the BPS submodel into the Skyrme model lagrangian may significantly reduce this too large value, providing further evidence for the claim that the BPS Skyrme model may play an important role in the description of nuclei and nuclear matter.Comment: Latex, 26 pages, 1 figure; v2: some typos corrected, version accepted for publication in Phys. Rev.

    Symmetries and exact solutions of the BPS Skyrme model

    Get PDF
    The BPS Skyrme model is a specific subclass of Skyrme-type field theories which possesses both a BPS bound and infinitely many soliton solutions (skyrmions) saturating that bound, a property that makes the model a very convenient first approximation to the study of some properties of nuclei and hadrons. A related property, the existence of a large group of symmetry transformations, allows for solutions of rather general shapes, among which some of them will be relevant to the description of physical nuclei. We study here the classical symmetries of the BPS Skyrme model, applying them to construct soliton solutions with some prescribed shapes, what constitutes a further important step for the reliable application of the model to strong interaction physics.Comment: Latex, 17 page

    A BPS Skyrme model

    Full text link
    Within the set of generalized Skyrme models, we identify a submodel which has both infinitely many symmetries and a Bogomolny bound which is saturated by infinitely many exact soliton solutions. Concretely, the submodel consists of the square of the baryon current and a potential term only. Further, already on the classical level, this BPS Skyrme model reproduces some features of the liquid drop model of nuclei. Here, we review the properties of the model and we discuss the semiclassical quantization of the simplest Skyrmion (the nucleon).Comment: Conference Proceedings of the 28th International Colloquium On Group Theoretical Methods In Physics (GROUP 28), July 2010, Northumbria, England. 10pages, 1 figure. Version 2: Publication information adde
    corecore