2,344 research outputs found
Microwave Spectroscopy
Contains reports on two research projects.Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 36-039-AMC-03200(E
Dynamics of magnetic domain wall motion after nucleation: Dependence on the wall energy
The dynamics of magnetic domain wall motion in the FeNi layer of a
FeNi/Al2O3/Co trilayer has been investigated by a combination of x-ray magnetic
circular dichroism, photoelectron emission microscopy, and a stroboscopic
pump-probe technique. The nucleation of domains and subsequent expansion by
domain wall motion in the FeNi layer during nanosecond-long magnetic field
pulses was observed in the viscous regime up to the Walker limit field. We
attribute an observed delay of domain expansion to the influence of the domain
wall energy that acts against the domain expansion and that plays an important
role when domains are small.Comment: Accepted for publication in Physical Review Letter
Influence of topography and Co domain walls on the magnetization reversal of the FeNi layer in FeNi/AlO/Co magnetic tunnel junctions
We have studied the magnetization reversal dynamics of FeNi/AlO/Co
magnetic tunnel junctions deposited on step-bunched Si substrates using
magneto-optical Kerr effect and time-resolved x-ray photoelectron emission
microscopy combined with x-ray magnetic circular dichroism (XMCD-PEEM).
Different reversal mechanisms have been found depending on the substrate miscut
angle. Larger terraces (smaller miscut angles) lead to a higher nucleation
density and stronger domain wall pinning. The width of domain walls with
respect to the size of the terraces seems to play an important role in the
reversal. We used the element selectivity of XMCD-PEEM to reveal the strong
influence of the stray field of domain walls in the hard magnetic layer on the
magnetic switching of the soft magnetic layer.Comment: 8 Pages, 7 Figure
Evolution of Multiphase Hot Interstellar Medium in Elliptical Galaxies
We present the results of a variety of simulations concerning the evolution
of multiphase (inhomogeneous) hot interstellar medium (ISM) in elliptical
galaxies. We assume the gases ejected from stars do not mix globally with the
circumferential gas. The ejected gas components evolve separately according to
their birth time, position, and origin. We consider cases where supernova
remnants (SNRs) mix with local ISM. The components with high metal abundance
and/or high density cool and drop out of the hot ISM gas faster than the other
components because of their high metal abundance and/or density. This makes the
average metal abundance of the hot ISM low. Furthermore, since the metal
abundance of mass-loss gas decreases with radius, gas inflow from outer region
makes the average metal abundance of the hot ISM smaller than that of mass-loss
gas in the inner region. As gas ejection rate of stellar system decreases, mass
fraction of mass-loss gas ejected at outer region increases in a galaxy. If the
mixing of SNRs is ineffective, our model predicts that observed [Si/Fe] and
[Mg/Fe] should decrease towards the galactic center because of strong iron
emission by SNRs. In the outer region, where the cooling of time of the ISM is
long, the selective cooling is ineffective and most of gas components remain
hot. Thus, the metal abundance of the ISM in this region directly reflects that
of the gas ejected from stars. Our model shows that supernovae are not
effective heating sources in the inner region of elliptical galaxies, because
most of the energy released by them radiates. Therefore, cooling flow is
established even if the supernova rate is high. Mixing of SNRs with ambient ISM
makes the energy transfer between supernova explosion and ambient ISM more
effective.Comment: 21 pages (AASTeX), 14 figures, accepted for publication in The
Astrophysical Journa
Magnetic Susceptibility for
We examine experimental magnetic susceptibility for
CaVO by fitting with fitting function .
The function is a power series of 1/T and the lowest order
term is fixed as , where is the Curie constant as determined by the
experimental -value (g=1.96). Fitting parameters are , and
expansion coefficients except for the first one in .
We determine and as 0.73 and 0 for an
experimental sample. We interpret as the volume fraction of
CaVO in the sample and as the susceptibility for the
pure CaVO. The result of means that the sample includes
nonmagnetic components. This interpretation consists with the result of a
perturbation theory and a neutron scattering experiment.Comment: 4pages, 4figure
Interplay between magnetic anisotropy and interlayer coupling in nanosecond magnetization reversal of spin-valve trilayers
The influence of magnetic anisotropy on nanosecond magnetization reversal in
coupled FeNi/Cu/Co trilayers was studied using a photoelectron emission
microscope combined with x-ray magnetic circular dicroism. In quasi-isotropic
samples the reversal of the soft FeNi layer is determined by domain wall
pinning that leads to the formation of small and irregular domains. In samples
with uniaxial magnetic anisotropy, the domains are larger and the influence of
local interlayer coupling dominates the domain structure and the reversal of
the FeNi layer
Meta-Plaquette Expansion for the Triplet Excitation Spectrum in CaVO
We study antiferromagnetic, Heisenberg models with nearest and second
neighbor interactions on the one-fifth depleted square lattice which describes
the spin degrees of freedom in the spin-gap system CaVO. The
meta-plaquette expansion for the triplet excitation spectrum is extended to
fifth order, and the results are compared with experimental data on
CaVO. We attempt to locate the phase boundary between magnetically
ordered and gapped phases.Comment: 4 figure
Competing Spin-Gap Phases in a Frustrated Quantum Spin System in Two Dimensions
We investigate quantum phase transitions among the spin-gap phases and the
magnetically ordered phases in a two-dimensional frustrated antiferromagnetic
spin system, which interpolates several important models such as the
orthogonal-dimer model as well as the model on the 1/5-depleted square lattice.
By computing the ground state energy, the staggered susceptibility and the spin
gap by means of the series expansion method, we determine the ground-state
phase diagram and discuss the role of geometrical frustration. In particular,
it is found that a RVB-type spin-gap phase proposed recently for the
orthogonal-dimer system is adiabatically connected to the plaquette phase known
for the 1/5-depleted square-lattice model.Comment: 6 pages, to appear in JPSJ 70 (2001
- …