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A. MINIMUM DETECTABLE POWER IN SUPERCONDUCTING BOLOMETERS

There is considerable interest in the development of sensitive, high-speed detectors

for the far infrared portion of the electromagnetic spectrum. This is a particularly awk-

ward energy range for the usual types of quantum detector (photomultiplier, photocon-

ductor, etc.) because at these frequencies individual quantum events are completely

masked by the statistical fluctuations associated with thermal equilibrium at ordinary

temperatures. At cryogenic temperatures, on the other hand, the ultimate sensitivity

of both quantum and thermal detectors is increased by several orders of magnitude.

Thermal detectors have the added advantage that their response is not characterized by

an absorption edge. The successful use of superconducting bolometers for the detection

of far infrared lattice vibrations1, 2 has stimulated an interest in examining their theo-

retical capabilities as sensitive, high-speed, far infrared detectors.

1. Sources of Noise in Radiation Bolometers

The ultimate sensitivity of a radiation bolometer is set by three noise processes:

temperature noise, Johnson noise, and current noise. The first two can be easily

derived from fundamental considerations. Temperature noise is determined by the

statistical nature of thermal equilibrium within the sensing element of a thermal

detector. Johnson or Nyquist noise is the manifestation of voltage fluctuations at the

terminals of a conductor arising from the random motion of charged carrieis. Current

noise, on the other hand, is much more complex. Since it is produced by processes

that cannot be adequately observed, it is usually determined empirically. Each

of these noise processes has been treated in considerable detail by Smith, Jones,

and Chasmar. 3

The mean-square values of statistically independent fluctuations are additive, and

the rms noise power arising from the three processes is given by
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= lkTZG + TR 22] (Af) I / Z watts. (1)
r rf

The first term in the bracket on the right is the contribution of thermal noise; the

second, Johnson noise; and the third, current noise.

Let us now define the symbols appearing in Eq. 1: E is the emissivity of the

receiving area of the bolometer; k (joules/oK) is Boltzmann's constant; T (°K) is the

absolute temperature; G (watts/ K) is the thermal conductance of the receiving area of

the bolometer to its surroundings; R (ohms) is the electrical resistance of the bolom-
-l

eter; i (amps) is the current flowing through it; f (sec- ) is the noise frequency; and
-l

Af (sec- ) is the bandwidth over which the noise is observed. The quantity S is an

intrinsic structure parameter related to the geometry, material, crystal structure,

purity and strain state of the conducting element. This is a complex factor that is usu-

ally determined empirically.

The quantity r is the responsivity of the bolometer. It is given by

r = FRia volts/watt, (2)

G (+2 2 1/2
e

where F is the "bridge factor" given by

R
F - R + (3)

and Rf (ohms) is the load resistance connected to the bolometer. The temperature

coefficient of resistivity a is defined as

1 dR -1a RdT K . (4)

The effect of Joule heating within the bolometer produced by the biasing current i is

to alter the thermal conductance to an effective value given by

G e = G - aRi R + R- watts/ K. (5)

It should be clear from Eqs. 2 and 5 that the stability of the bolometer is closely allied

to its operating conditions. If, for example, Rp > R and the biasing current i is

increased to the point where Ge vanishes, Eq. 2 becomes singular and a thermal run-

away condition develops. Within the stable portion of its operating range, the respon-

sivity of a bolometer can be easily adjusted by varying the biasing current i and the load

resistance R .

Referring to Eq. 2, the quantity = 2rrf (sec - ) is the angular frequency of the signal,
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and the quantity T (sec) is the thermal time constant of the bolometric element.

T = C/G sec (6)

The thermal capacity of the bolometric element is

C = pCvAd joules/ K, (7)

where p (gms/cm3 ) is the density of the conducting element, Cv (joules/gmoK) is its

specific heat, A (cm ) is its area, and d (cm) is its thickness.

Referring to Eq. 1, we wish to point out that the current noise spectrum is the only
-l

one that is a function of frequency. This f-1 law was found experimentally to hold over

a wide range of frequencies in carbon resistors3:

10 - 3 < f < 10 4 . (8)

But clearly an integration over this noise spectrum would yield a logarithmic singularity

at the origin, so it must be conceded that the f- 1 behavior does not apply at all frequen-

cies. Nevertheless, over the region of practical interest it is likely that current noise

could be reduced to a tolerable level by chopping.

Both Johnson and current noises are inversely proportional to the responsivity r.

Since the responsivity is directly proportional to the thermal coefficient of resistance a

(see Eq. 2), materials with sufficiently high coefficients a can be utilized to effectively

eliminate all noise contributions other than thermal noise. Since thermal noise is pro-

portional to the absolute temperature T, the motivation for working at cryogenic tem-

peratures is clear.

It may be argued that fluctuations in signal or background radiation introduce prob-

lems that transcend considerations of the ultimate sensitivity of a detector. We readily

concede that there may be situations in which the ultimate detector sensitivity may be

an irrelevant issue. Nevertheless, we maintain that an accurate knowledge of the Wiener

spectra of the radiation of interest should suggest signal-processing techniques (such as

chopping or filtering) that substantially reduce such fluctuations to the point where the

ultimate detector sensitivity remains a relevant issue. These considerations are con-

siderably more specialized and are outside the scope of the present discussion.

2. Superconducting Bolometer

In normal metals the necessary conditions of high a and low operating temperature T

are mutually exclusive. But the superconducting transition exhibits enormous values for

a at transition temperatures that can be driven arbitrarily close to absolute zero by

means of an external magnetic field. Suppose, for example, we were to approximate the

superconducting transition by the following function:
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p(T) = po 1 + exp ( ohm cm. (9)
c

This function is sketched in Fig. I-1. The transition temperature Tc (K) is defined by

p(Tc) = p0/2, (10)

where po is the limiting resistivity at absolute zero in the corresponding normal state.

The width of the superconducting transition AT c (OK) is so defined that

p(T -AT /2) e 0. 27Po (11)
c c 1+e 0

and

P
p(T +ATc /Z) -_ _ 0.73p . (12)

1+e

In this approximation, evaluation of a(Tc) from Eq. 4 yields

-1 -1
a(T ) = (AT ) (oK) . (13)

The transition width ATc is a complex function of metallic purity, perfection of crystal

structure, mechanical strain, bias current density, and applied magnetic field. In alloys

p(T)

Po / Fig. I-1. Temperature dependence of the
resistivity of a superconductor.
The quantity Po (ohm cm) is the

limiting resistivity at absolute
zero in the corresponding nor-

IT mal state.
A Tc

AT may amount to several degrees Kelvin. On the other hand, AT has been measured
c c 4

in extremely pure, unstrained single crystals of tin at very low current densities.
-4

Values as low as 5 X 10-4 have been observed, and the authors remarked that even these

finite widths may have been caused by small, mechanical strains existing in their

samples.

In the approximation of Eq. 9, the corresponding coefficient of resistivity for the tin

samples of de Haas and Voogd would amount to

a(Tc)= 2 X 103 K - . (14)
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But the values of a that have actually been observed in superconducting bolometers3, 5

are in the range 2-1000K-1 .

The effective suppression of Johnson noise in a superconducting bolometer by the

enormous value for a inherent in the superconducting transition has been experimentally

demonstrated by Andrews. With an observed a = 50'K -1, the ratio of Johnson to ther-

mal noise was found to be 0. 12.

Probably the most sensitive superconducting bolometer that has been demonstrated

is that of Martin and Bloor. 5 The observed minimum detectable power was somewhat
-12 -1 -1

less than 10 watt in the far infrared within a bandpass of 10 sec . The observed

signal was one hundred times larger than that observed by means of a Golay cell. Martin

and Bloor remark that their noise level was actually set by their amplifier and, in fact,

their calculated value for the bolometer was 3. 5 X 104 watt with a bandpass of
-l -

10 1 sec-. The extremely long thermal time constant (1. 25 sec) of this bolometer,

however, precludes its utility in many practical applications.

3. Thermal Boundary Resistance

Recent experiments on the propagation of heat between dissimilar solids 7 at low tem-

peratures have revealed that a temperature discontinuity develops at the interface which

is proportional to the normal component of the thermal flux. The magnitude of the tem-

perature discontinuity is proportional to the so-called "thermal boundary resistance" R
2 -i

(oK cm2 watts ) which is defined by

AAT
Q - watts, (15)

R

where ( is the rate of flow of thermal energy, A (cm2) is the area of the interface, and

AT (°K) is the magnitude of the discontinuity developed at the interface.

Experiments on the thermal boundary resistance have resulted in an empirical rela-

tionship describing the temperature dependence of R .

R = jT - n 
oK cm watts - 1 . (16)

The exponent n is dependent upon the nature of the interface, but it is usually very close

to 3. The numerical factor q1 (cm 2 °Kn +l watts - 1 ) is also related to the nature of the

interface and to the particular materials in contact. Typical values range between 0. 3

and 30. The lower values are for intermetallic interfaces; the higher values are usually

associated with metal-insulator interfaces.

Since the defining equation for thermal conductance G is

( = GAT watts, (17)
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upon comparing Eqs. 15 and 16, we have

G = A-1Tn watts °K - . (18)

4. Recent Experimental Developments

The thermal boundary resistance phenomenon has suggested a novel approach to the

design of high-speed thermal detectors. A thin film (~1000 A) of a superconducting metal

such as indium is evaporated directly upon a single-crystal substrate such as sapphire,

which exhibits unusually high thermal conductivity at cryogenic temperatures. The ther-

mal conductance between the film and substrate is sufficiently high to provide an

extremely fast thermal response time. On the other hand, the sensitivity of the device

in narrow-band applications is competitive with the best radiation detectors available, 8

and is not limited to any particular portion of the electromagnetic spectrum.

Returning to the expression for the minimum detectable power (Eq. 1), let us assume

that the thermal coefficient of resistance a is sufficiently high so that the thermal noise

contribution dominates. Substitution of Eq. 18 in Eq. 1 yields

W 2 AkTn+2) 1/2
m _

= 
__ (Af)/2 (19)

The thermal boundary resistance of an indium-sapphire interface has been measured

by Neeper and Dillinger.7 Their experimental value is given by

R? = 26T-2.8 K cm2 watt - 1 . (20)

The transition temperature of indium is 3.4 K. Assuming a perfectly absorbing surface

(suitably blackened with E = 1), we evaluate the minimum detectable power of an indium-

film bolometer with an effective area of (0. 25 mm) , deposited upon a sapphire sub-

strate, and connected to an amplifier with an effective bandwidth of 1 cps. Equation 19

yields

W = 7 X 10 1 3 watts (indium). (21)m

This value is approximately equal to that measured by Martin and Bloor 5 for their tin

bolometer.

Equation 19 indicates that considerable advantage is secured by low-temperature

operation. Consider a zinc-film bolometer 9 with a transition temperature of 0. 92 'K.

Since no experimental thermal boundary resistance data are available for zinc-sapphire

interfaces, we shall approximate the value with Eq. 20. The minimum detectable power

for a zinc-film bolometer, evaluated under the same conditions as those for indium

(Eq. 21), is
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2 -14
W = 1.2 X 10 watts (zinc). (22)m

Thus, by lowering the temperature 2. 5 K, nearly two orders of magnitude are gained in

theoretical sensitivity.

The theoretical thermal time constants of these bolometers can be evaluated from

Eqs. 6, 7, and 18. The low-temperature specific heat of a metal can be represented by

3  yT -1 -1
C = pT + joules gm oK (23)

1941 -1 -4
S1941 joules gm K -4 (24)

W3

where y (joules mole - 1 °K - 2 ) is the coefficient of the electronic specific heat, P repre-

sents the lattice contribution, W (gms mole - 1 ) is the molecular weight, and 0 (oK) is

the Debye temperature. Experimentally determined values of the constants p and y

have been tabulated in Rosenberg. 10 The resulting expression for the thermal time

constant of a superconducting film bolometer deposited upon an insulating crystal

is given by

T = p T + q2c) rdT n sec. (25)

Equation 25, evaluated for indium and zinc films, 1000 A thick, deposited upon a sapphire

substrate, yields

7 = 35 n sec T = 22 n sec. (26)
(indium) (zinc)

These time constants indicate a degree of performance that greatly exceeds that of

the more conventional thermal detectors.

J. M. Andrews, Jr.
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B. FERMI SURFACES OF GALLIUM FROM SIZE EFFECT

The wave vectors corresponding to the cross section of the Fermi surfaces have

been found for gallium single crystals whose normals are along the b and c axes (see

Figs. I-2 and 1-3). The experimental techniques used for these measurements were

similar to those reported previously.1

The signal obtained in these experiments has a complete line shape. The magnetic

330- 0 300
300 3300

Fig. 1-2. Wave vectors for b crystal.
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Fig. 1-3. Wave vectors for c crystal.

field dependence of the signal as the radiofrequency changes was used to ascertain the

portion of the curve for determining the external Fermi surface wave vector in terms

of the magnetic field and the thickness of the sample. The portion of the line shape which

had the smallest shift of magnetic field with frequency is identified in these curves as

the orbit corresponding to the thickness of the sample. Although the line shape is not

well understood, these data may be used with some confidence.

A. Fukumoto
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