8,789 research outputs found

    Determining the Electron-Phonon Coupling Strength in Correlated Electron Systems from Resonant Inelastic X-ray Scattering

    Full text link
    We show that high resolution Resonant Inelastic X-ray Scattering (RIXS) provides direct, element-specific and momentum-resolved information on the electron-phonon (e-p) coupling strength. Our theoretical analysis demonstrates that the e-p coupling can be extracted from RIXS spectra by determining the differential phonon scattering cross section. An alternative, very direct manner to extract the coupling is to use the one and two-phonon loss ratio, which is governed by the e-p coupling strength and the core-hole life-time. This allows measurement of the e-p coupling on an absolute energy scale.Comment: 4 pages, 3 figure

    Spacetime Encodings II - Pictures of Integrability

    Get PDF
    I visually explore the features of geodesic orbits in arbitrary stationary axisymmetric vacuum (SAV) spacetimes that are constructed from a complex Ernst potential. Some of the geometric features of integrable and chaotic orbits are highlighted. The geodesic problem for these SAV spacetimes is rewritten as a two degree of freedom problem and the connection between current ideas in dynamical systems and the study of two manifolds sought. The relationship between the Hamilton-Jacobi equations, canonical transformations, constants of motion and Killing tensors are commented on. Wherever possible I illustrate the concepts by means of examples from general relativity. This investigation is designed to build the readers' intuition about how integrability arises, and to summarize some of the known facts about two degree of freedom systems. Evidence is given, in the form of orbit-crossing structure, that geodesics in SAV spacetimes might admit, a fourth constant of motion that is quartic in momentum (by contrast with Kerr spacetime, where Carter's fourth constant is quadratic).Comment: 11 pages, 10 figure

    Gravitational Radiation from Plunging Orbits - Perturbative Study -

    Get PDF
    Numerical relativity has recently yielded a plethora of results about kicks from spinning mergers which has, in turn, vastly increased our knowledge about the spin interactions of black hole systems. In this work we use black hole perturbation theory to calculate accurately the gravitational waves emanating from the end of the plunging stage of an extreme mass ratio merger in order to further understand this phenomenon. This study focuses primarily on spin induced effects with emphasis on the maximally spinning limit and the identification of possible causes of generic behavior. We find that gravitational waves emitted during the plunging phase exhibit damped oscillatory behavior, corresponding to a coherent excitation of quasi-normal modes by the test particle. This feature is universal in the sense that the frequencies and damping time do not depend on the orbital parameters of the plunging particle. Furthermore, the observed frequencies are distinct from those associated with the usual free quasi-normal ringing. Our calculation suggests that a maximum in radiated energy and momentum occurs at spin parameters equal to a/M=0.86a/M=0.86 and a/M=0.81a/M=0.81, respectively for the plunge stage of a polar orbit. The dependence of linear momentum emission on the angle at which a polar orbit impacts the horizon is quantified. One of the advantages of the perturbation approach adopted here is that insight into the actual mechanism of radiation emission and its relationship to black hole ringing is obtained by carefully identifying the dominant terms in the expansions used

    Doping dependence of magnetic excitations of 1D cuprates as probed by Resonant Inelastic x-ray Scattering

    Full text link
    We study the dynamical, momentum dependent two- and four-spin response functions in doped and undoped 1D cuprates, as probed by resonant inelastic x-ray scattering, using an exact numerical diagonalization procedure. In the undoped tJt-J system the four-spin response vanishes at π\pi, whereas the two-spin correlator is peaked around π/2\pi/2, with generally larger spectral weight. Upon doping spectra tend to soften and broaden, with a transfer of spectral weight towards higher energy. However, the total spectral weight and average peak position of either response are only weakly affected by doping up to a concentration of 1/8. Only the two-spin response at π\pi changes strongly, with a large reduction of spectral weight and enhancement of excitation energy. At other momenta the higher-energy, generic features of the magnetic response are robust against doping. It signals the presence of strong short-range antiferromagnetic correlations, even after doping mobile holes into the system. We expect this to hold also in higher dimensions.Comment: 7 pages, 5 figure

    Theory for Magnetism and Triplet Superconductivity in LiFeAs

    Full text link
    Superconducting pnictides are widely found to feature spin-singlet pairing in the vicinity of an antiferromagnetic phase, for which nesting between electron and hole Fermi surfaces is crucial. LiFeAs differs from the other pnictides by (i) poor nesting properties and (ii) unusually shallow hole pockets. Investigating magnetic and pairing instabilities in an electronic model that incorporates these differences, we find antiferromagnetic order to be absent. Instead we observe almost ferromagnetic fluctuations which drive an instability toward spin-triplet p-wave superconductivity.Comment: Published versio

    Electronic Correlations in Oligo-acene and -thiophene Organic Molecular Crystals

    Get PDF
    From first principles calculations we determine the Coulomb interaction between two holes on oligo-acene and -thiophene molecules in a crystal, as a function of the oligomer length. The relaxation of the molecular geometry in the presence of holes is found to be small. In contrast, the electronic polarization of the molecules that surround the charged oligomer, reduces the bare Coulomb repulsion between the holes by approximately a factor of two. In all cases the effective hole-hole repulsion is much larger than the calculated valence bandwidth, which implies that at high doping levels the properties of these organic semiconductors are determined by electron-electron correlations.Comment: 5 pages, 3 figure

    Multipair approach to pairing in nuclei

    Full text link
    The ground state of a general pairing Hamiltonian for a finite nuclear system is constructed as a product of collective, real, distinct pairs. These are determined sequentially via an iterative variational procedure that resorts to diagonalizations of the Hamiltonian in restricted model spaces. Different applications of the method are provided that include comparisons with exact and projected BCS results. The quantities that are examined are correlation energies, occupation numbers and pair transfer matrix elements. In a first application within the picket-fence model, the method is seen to generate the exact ground state for pairing strengths confined in a given range. Further applications of the method concern pairing in spherically symmetric mean fields and include simple exactly solvable models as well as some realistic calculations for middle-shell Sn isotopes. In the latter applications, two different ways of defining the pairs are examined: either with J=0 or with no well-defined angular momentum. The second choice reveals to be more effective leading, under some circumstances, to solutions that are basically exact.Comment: To appear in Physical Review

    Orbital order in classical models of transition-metal compounds

    Full text link
    We study the classical 120-degree and related orbital models. These are the classical limits of quantum models which describe the interactions among orbitals of transition-metal compounds. We demonstrate that at low temperatures these models exhibit a long-range order which arises via an "order by disorder" mechanism. This strongly indicates that there is orbital ordering in the quantum version of these models, notwithstanding recent rigorous results on the absence of spin order in these systems.Comment: 7 pages, 1 eps fi

    Long range scattering resonances in strong-field seeking states of polar molecules

    Full text link
    We present first steps toward understanding the ultracold scattering properties of polar molecules in strong electric field-seeking states. We have found that the elastic cross section displays a quasi-regular set of potential resonances as a function of the electric field, which potentially offers intimate details about the inter-molecular interaction. We illustrate these resonances in a ``toy'' model composed of pure dipoles, and in more physically realistic systems. To analyze these resonances, we use a simple WKB approximation to the eigenphase, which proves both reasonably accurate and meaningful. A general treatment of the Stark effect and dipolar interactions is also presented
    corecore