1,122 research outputs found

    Dirac dispersion and non-trivial Berry's phase in three-dimensional semimetal RhSb3

    Full text link
    We report observations of magnetoresistance, quantum oscillations and angle-resolved photoemission in RhSb3_3, a unfilled skutterudite semimetal with low carrier density. The calculated electronic band structure of RhSb3_3 entails a Z2Z_2 quantum number ν0=0,ν1=ν2=ν3=1\nu_0=0,\nu_1=\nu_2=\nu_3=1 in analogy to strong topological insulators, and inverted linear valence/conduction bands that touch at discrete points close to the Fermi level, in agreement with angle-resolved photoemission results. Transport experiments reveal an unsaturated linear magnetoresistance that approaches a factor of 200 at 60 T magnetic fields, and quantum oscillations observable up to 150~K that are consistent with a large Fermi velocity (1.3×106\sim 1.3\times 10^6 ms1^{-1}), high carrier mobility (14\sim 14 m2m^2/Vs), and small three dimensional hole pockets with nontrivial Berry phase. A very small, sample-dependent effective mass that falls as low as 0.015(7)0.015(7) bare masses scales with Fermi velocity, suggesting RhSb3_3 is a new class of zero-gap three-dimensional Dirac semimetal.Comment: 9 pages, 4 figure

    The electronic structure of the high-symmetry perovskite iridate Ba2IrO4

    Get PDF
    We report angle-resolved photoemission (ARPES) measurements, density functional and model tight-binding calculations on Ba2_2IrO4_4 (Ba-214), an antiferromagnetic (TN=230T_N=230 K) insulator. Ba-214 does not exhibit the rotational distortion of the IrO6_6 octahedra that is present in its sister compound Sr2_2IrO4_4 (Sr-214), and is therefore an attractive reference material to study the electronic structure of layered iridates. We find that the band structures of Ba-214 and Sr-214 are qualitatively similar, hinting at the predominant role of the spin-orbit interaction in these materials. Temperature-dependent ARPES data show that the energy gap persists well above TNT_N, and favour a Mott over a Slater scenario for this compound.Comment: 13 pages, 9 figure

    Topological surface states above the Fermi energy in Hf2Te2P\textrm{Hf}_{2}\textrm{Te}_2\textrm{P}

    Get PDF
    We report a detailed experimental study of the band structure of the recently discovered topological material Hf2Te2P\textrm{Hf}_{2}\textrm{Te}_2\textrm{P}. Using the combination of scanning tunneling spectroscopy and angle-resolved photo-emission spectroscopy with surface K-doping, we probe the band structure of Hf2Te2P\textrm{Hf}_{2}\textrm{Te}_2\textrm{P} with energy and momentum resolution above the Fermi level. Our experiments show the presence of multiple surface states with a linear Dirac-like dispersion, consistent with the predictions from previously reported band structure calculations. In particular, scanning tunneling spectroscopy measurements provide the first experimental evidence for the strong topological surface state predicted at 460 meV, which stems from the band inversion between Hf-d and Te-p orbitals. This band inversion comprised of more localized d-states could result in a better surface-to-bulk conductance ratio relative to more traditional topological insulators.Comment: Supplementary materials available upon reques

    Tunable Polaronic Conduction in Anatase TiO2

    Get PDF
    Oxygen vacancies created in anatase TiO2 by UV photons (80–130 eV) provide an effective electron-doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photoemission reveals that the quasiparticles are large polarons. These results indicate that anatase can be tuned from an insulator to a polaron gas to a weakly correlated metal as a function of doping and clarify the nature of conductivity in this material.open1192sciescopu

    Anderson Transition in Disordered Graphene

    Full text link
    We use the regularized kernel polynomial method (RKPM) to numerically study the effect disorder on a single layer of graphene. This accurate numerical method enables us to study very large lattices with millions of sites, and hence is almost free of finite size errors. Within this approach, both weak and strong disorder regimes are handled on the same footing. We study the tight-binding model with on-site disorder, on the honeycomb lattice. We find that in the weak disorder regime, the Dirac fermions remain extended and their velocities decrease as the disorder strength is increased. However, if the disorder is strong enough, there will be a {\em mobility edge} separating {\em localized states around the Fermi point}, from the remaining extended states. This is in contrast to the scaling theory of localization which predicts that all states are localized in two-dimensions (2D).Comment: 4 page

    Direct observation of minibands in twisted heterobilayers

    Get PDF
    Stacking two-dimensional (2D) van der Waals materials with different interlayer atomic registry in a heterobilayer causes the formation of a long-range periodic superlattice that may bestow the heterostructure with exotic properties such as new quantum fractal states [1-3] or superconductivity [4, 5]. Recent optical measurements of transition metal dichalcogenide (TMD) heterobilayers have revealed the presence of hybridized interlayer electron-hole pair excitations at energies defined by the superlattice potential [6-10]. The corresponding quasiparticle band structure, so-called minibands, have remained elusive and no such features have been reported for heterobilayers comprised of a TMD and another type of 2D material. Here, we introduce a new X-ray capillary technology for performing micro-focused angle-resolved photoemission spectroscopy (microARPES) with a spatial resolution on the order of 1 μ\mum, enabling us to map the momentum-dependent quasiparticle dispersion of heterobilayers consisting of graphene on WS2_2 at variable interlayer twist angles (θ\theta). Minibands are directly observed for θ=2.5\theta = 2.5^{\circ} in multiple mini Brillouin zones (mBZs), while they are absent for a larger twist angle of θ=26.3\theta = 26.3^{\circ}. These findings underline the possibility to control quantum states via the stacking configuration in 2D heterostructures, opening multiple new avenues for generating materials with enhanced functionality such as tunable electronic correlations [11] and tailored selection rules for optical transitions [12].Comment: Main manuscript: 14 pages, 4 figures. Supporting information: 8 pages, 5 figure
    corecore