903 research outputs found

    Inferring the magnetic field vector in the quiet Sun. II. Interpreting results from the inversion of Stokes profiles

    Full text link
    In a previous paper, we argued that the inversion of Stokes profiles applied to spectropolarimetric observations of the solar internetwork yield unrealistically large values of the inclination of the magnetic field vector (γ\gamma). This is because photon noise in Stokes QQ and UU are interpreted by the inversion code as valid signals, that leads to an overestimation of the transverse component BB_\perp, thus the inclination γ\gamma. However, our study was based on the analysis of linear polarization signals that featured only uncorrelated noise. In this paper, we develop this idea further and study this effect in Stokes QQ and UU profiles that also show correlated noise. In addition, we extend our study to the three components of the magnetic field vector, as well as the magnetic filling factor α\alpha. With this, we confirm the tendency to overestimate γ\gamma when inverting linear polarization profiles that, although non-zero, are still below the noise level. We also establish that the overestimation occurs mainly for magnetic fields that are nearly vertical γ20deg\gamma \lesssim 20\deg. This indicates that a reliable inference of the inclination of the magnetic field vector cannot be achieved by analyzing only Stokes II and VV. In addition, when inverting Stokes QQ and UU profiles below the noise, the inversion code retrieves a randomly uniform distribution of the azimuth of the magnetic field vector ϕ\phi. To avoid these problems, we propose only inverting Stokes profiles for which the linear polarization signals are sufficiently above the noise level. However, this approach is also biased because, in spite of allowing for a very accurate retrieval of the magnetic field vector from the selected Stokes profiles, it selects only profiles arising from highly inclined magnetic fields.Comment: Accepted for publication in Astronomy and Astrophysics. 14 pages. 7 color figure

    The uncombed penumbra

    Full text link
    The uncombed penumbral model explains the structure of the sunspot penumbra in terms of thick magnetic fibrils embedded in a magnetic surrounding atmosphere. This model has been successfully applied to explain the polarization signals emerging from the sunspot penumbra. Thick penumbral fibrils face some physical problems, however. In this contribution we will offer possible solutions to these shortcomings.Comment: 6 pages, 2 figures. to appear in the proceedings of the Solar Polarization Workshop I

    Inferring the magnetic field vector in the quiet Sun. III. Disk variation of the Stokes profiles and isotropism of the magnetic field

    Full text link
    We have studied the angular distribution of the magnetic field vector in the solar internetwork employing high-quality data (noise level σ3×104\sigma \approx 3\times 10^{-4} in units of the quiet-Sun intensity) at different latitudes recorded with the Hinode/SP instrument. Instead of applying traditional inversion codes of the radiative transfer equation to retrieve the magnetic field vector at each spatial point on the solar surface and studying the resulting distribution of the magnetic field vector, we surmised a theoretical distribution function of the magnetic field vector and used it to obtain the theoretical histograms of the Stokes profiles. These histograms were then compared to the observed ones. Any mismatch between them was ascribed to the theoretical distribution of the magnetic field vector, which was subsequently modified to produce a better fit to the observed histograms. With this method we find that Stokes profiles with signals above 2×1032\times 10^{-3} (in units of the continuum intensity) cannot be explained by an isotropic distribution of the magnetic field vector. We also find that the differences between the histograms of the Stokes profiles observed at different latitudes cannot be explained in terms of line-of-sight effects. However, they can be explained by a distribution of the magnetic field vector that inherently varies with latitude. We note that these results are based on a series of assumptions that, although briefly discussed in this paper, need to be considered in more detail in the future.Comment: Accepted for publication in Astronomy and Astrophysics. 14 pages, 8 color figure

    Modified p-modes in penumbral filaments?

    Full text link
    Aims: The primary objective of this study is to search for and identify wave modes within a sunspot penumbra. Methods: Infrared spectropolarimetric time series data are inverted using a model comprising two atmospheric components in each spatial pixel. Fourier phase difference analysis is performed on the line-of-sight velocities retrieved from both components to determine time delays between the velocity signals. In addition, the vertical separation between the signals in the two components is calculated from the Stokes velocity response functions. Results: The inversion yields two atmospheric components, one permeated by a nearly horizontal magnetic field, the other with a less-inclined magnetic field. Time delays between the oscillations in the two components in the frequency range 2.5-4.5 mHz are combined with speeds of atmospheric wave modes to determine wave travel distances. These are compared to expected path lengths obtained from response functions of the observed spectral lines in the different atmospheric components. Fast-mode (i.e., modified p-mode) waves exhibit the best agreement with the observations when propagating toward the sunspot at an angle ~50 degrees to the vertical.Comment: 8 pages, 12 figures, accepted for publication in Astronomy & Astrophysic

    Observations of solar small-scale magnetic flux-sheet emergence

    Full text link
    Aims. Moreno-Insertis et al. (2018) recently discovered two types of flux emergence in their numerical simulations: magnetic loops and magnetic sheet emergence. Whereas magnetic loop emergence has been documented well in the last years, by utilising high-resolution full Stokes data from ground-based telescopes as well as satellites, magnetic sheet emergence is still an understudied process. We report here on the first clear observational evidence of a magnetic sheet emergence and characterise its development. Methods. Full Stokes spectra from the Hinode spectropolarimeter were inverted with the SIR code to obtain solar atmospheric parameters such as temperature, line-of-sight velocities and full magnetic field vector information. Results. We analyse a magnetic flux emergence event observed in the quiet-sun internetwork. After a large scale appearance of linear polarisation, a magnetic sheet with horizontal magnetic flux density of up to 194 Mx/cm2^{2} hovers in the low photosphere spanning a region of 2 to 3 arcsec. The magnetic field azimuth obtained through Stokes inversions clearly shows an organised structure of transversal magnetic flux density emerging. The granule below the magnetic flux-sheet tears the structure apart leaving the emerged flux to form several magnetic loops at the edges of the granule. Conclusions. A large amount of flux with strong horizontal magnetic fields surfaces through the interplay of buried magnetic flux and convective motions. The magnetic flux emerges within 10 minutes and we find a longitudinal magnetic flux at the foot points of the order of \sim101810^{18} Mx. This is one to two orders of magnitude larger than what has been reported for small-scale magnetic loops. The convective flows feed the newly emerged flux into the pre-existing magnetic population on a granular scale.Comment: 6 pages, 5 figures, accepted as a letter in A&

    Temporal relation between quiet-Sun transverse fields and the strong flows detected by IMaX/SUNRISE

    Full text link
    Localized strongly Doppler-shifted Stokes V signals were detected by IMaX/SUNRISE. These signals are related to newly emerged magnetic loops that are observed as linear polarization features. We aim to set constraints on the physical nature and causes of these highly Doppler-shifted signals. In particular, the temporal relation between the appearance of transverse fields and the strong Doppler shifts is analyzed in some detail. We calculated the time difference between the appearance of the strong flows and the linear polarization. We also obtained the distances from the center of various features to the nearest neutral lines and whether they overlap or not. These distances were compared with those obtained from randomly distributed points on observed magnetograms. Various cases of strong flows are described in some detail. The linear polarization signals precede the appearance of the strong flows by on average 84+-11 seconds. The strongly Doppler-shifted signals are closer (0.19") to magnetic neutral lines than randomly distributed points (0.5"). Eighty percent of the strongly Doppler-shifted signals are close to a neutral line that is located between the emerging field and pre-existing fields. That the remaining 20% do not show a close-by pre-existing field could be explained by a lack of sensitivity or an unfavorable geometry of the pre-existing field, for instance, a canopy-like structure. Transverse fields occurred before the observation of the strong Doppler shifts. The process is most naturally explained as the emergence of a granular-scale loop that first gives rise to the linear polarization signals, interacts with pre-existing fields (generating new neutral line configurations), and produces the observed strong flows. This explanation is indicative of frequent small-scale reconnection events in the quiet Sun.Comment: 11 pages, 8 figure

    Temporal evolution of the Evershed flow in sunspots. II. Physical properties and nature of Evershed clouds

    Full text link
    Context: Evershed clouds (ECs) represent the most conspicuous variation of the Evershed flow in sunspot penumbrae. Aims: We determine the physical properties of ECs from high spatial and temporal resolution spectropolarimetric measurements. Methods: The Stokes profiles of four visible and three infrared spectral lines are subject to inversions based on simple one-component models as well as more sophisticated realizations of penumbral flux tubes embedded in a static ambient field (uncombed models). Results: According to the one-component inversions, the EC phenomenon can be understood as a perturbation of the magnetic and dynamic configuration of the penumbral filaments along which these structures move. The uncombed inversions, on the other hand, suggest that ECs are the result of enhancements in the visibility of penumbral flux tubes. We conjecture that the enhancements are caused by a perturbation of the thermodynamic properties of the tubes, rather than by changes in the vector magnetic field. The feasibility of this mechanism is investigated performing numerical experiments of thick penumbral tubes in mechanical equilibrium with a background field. Conclusions: While the one-component inversions confirm many of the properties indicated by a simple line parameter analysis (Paper I of this series), we tend to give more credit to the results of the uncombed inversions because they take into account, at least in an approximate manner, the fine structure of the penumbra.Comment: Accepted for publication in A&
    corecore