4,701 research outputs found

    Novel optically active lead-free relaxor ferroelectric (Ba0.6Bi0.2Li0.2)TiO3

    Full text link
    We discovered a near room temperature lead-free relaxor-ferroelectric (Ba0.6Bi0.2Li0.2)TiO3 (BBLT) having A-site compositional disordered ABO3 perovskite structure. Microstructure-property relations revealed that the chemical inhomogeneities and development of local polar nano regions (PNRs) are responsible for dielectric dispersion as a function of probe frequencies and temperatures. Rietveld analysis indicates mixed crystal structure with 80% tetragonal structure (space group P4mm) and 20% orthorhombic structure (space group Amm2) which is confirmed by the high resolution transmission electron diffraction pattern. Dielectric constant and tangent loss dispersion with and without illumination of light obey nonlinear Vogel-Fulture relation. It shows slim polarization-hysteresis (P-E) loops and excellent displacement coefficients (d33 ~ 233 pm/V) near room temperature, which gradually diminish near the maximum dielectric dispersion temperature (Tm). The underlying physics for light-sensitive dielectric dispersion was probed by X-ray photon spectroscopy (XPS) which strongly suggests that mixed valence of bismuth ions, especially Bi5+ ions, are responsible for most of the optically active centers. Ultraviolet photoemission measurements showed most of the Ti ions are in 4+ states and sit at the centers of the TiO6 octahedra, which along with asymmetric hybridization between O 2p and Bi 6s orbitals appears to be the main driving force for net polarization. This BBLT material may open a new path for environmental friendly lead-free relaxor-ferroelectric research.Comment: 23 pages, 5 figure

    The Paths to Choreography Extraction

    Full text link
    Choreographies are global descriptions of interactions among concurrent components, most notably used in the settings of verification (e.g., Multiparty Session Types) and synthesis of correct-by-construction software (Choreographic Programming). They require a top-down approach: programmers first write choreographies, and then use them to verify or synthesize their programs. However, most existing software does not come with choreographies yet, which prevents their application. To attack this problem, we propose a novel methodology (called choreography extraction) that, given a set of programs or protocol specifications, automatically constructs a choreography that describes their behavior. The key to our extraction is identifying a set of paths in a graph that represents the symbolic execution of the programs of interest. Our method improves on previous work in several directions: we can now deal with programs that are equipped with a state and internal computation capabilities; time complexity is dramatically better; we capture programs that are correct but not necessarily synchronizable, i.e., they work because they exploit asynchronous communication

    Mass Spectrometry-based Sequencing of Venom Peptides (Conotoxins) from Vermivorous Cone Snail, Conus Loroisii: Toxicity of its Natural Venom

    Get PDF
    Conus loroisii is a marine vermivorous snail found profusely in the southern seas of India. They harbor several toxic peptide components commonly called as ‘conotoxins’. In this study, we have identified and sequenced five conotoxins using proteome based tandem mass spectrometry analysis through Data analysis 4.1 software. Among them, we found Lo959 as contryphan which is previously described. All other conotoxins Lo1702, Lo1410, Lo1385 and Lo1686 belong to M-Superfamily conotoxins and novel to C. loroisii. Lo1410 is completely novel to conotoxin research with 3 disulfides and the amino acid sequence is derived as CCSTNCAVCIPCCP. All the identified M-Superfamily conotoxins are sub categorised to mini M2 superfamily conotoxins. Lo1702 and Lo1686 possess C- terminal amidation which is the key feature in conotoxins. Moreover, we have screened the natural venom for the occurrence of toxicity in the zebrafish model and brine shrimp

    Interference due to Coherence Swapping

    Get PDF
    We propose a method called `coherence swapping' which enables us to create superposition of a particle in two distinct paths, which is fed with initially incoherent, independent radiations. This phenomenon is also present for the charged particles, and can be used to swap the effect of flux line due to Aharonov-Bohm effect. We propose an optical version of the experimental set-up to test the coherence swapping. The phenomenon, which is simpler than entanglement swapping or teleportation, raises some fundamental questions about true nature of wave-particle duality, and also opens up the possibility of studying the quantum erasure from a new angle.Comment: Latex file, 10 pages, Two figure

    Testing Bell's inequality using Aharonov-Casher effect

    Full text link
    We propose the Aharonov-Casher (AC) effect for four entangled spin-half particles carrying magnetic moments in the presence of impenetrable line charge. The four particle state undergoes AC phase shift in two causually disconnected region which can show up in the correlations between different spin states of distant particles. This correlation can violate Bell's inequality, thus displaying the non-locality for four particle entangled states in an objective way. Also, we have suggested how to control the AC phase shift locally at two distant locations to test Bell's inequality. We belive that although the single particle AC effect may not be non-local but the entangled state AC effect is a non-local one.Comment: Latex, 6 pages, no figures, submitted to Phys. Rev.

    Solitary coherent structures in viscoelastic shear flow: computation and mechanism

    Get PDF
    Starting from stationary bifurcations in Couette-Dean flow, we compute nontrivial stationary solutions in inertialess viscoelastic circular Couette flow. These solutions are strongly localized vortex pairs, exist at arbitrarily large wavelengths, and show hysteresis in the Weissenberg number, similar to experimentally observed ``diwhirl'' patterns. Based on the computed velocity and stress fields, we elucidate a heuristic, fully nonlinear mechanism for these flows. We propose that these localized, fully nonlinear structures comprise fundamental building blocks for complex spatiotemporal dynamics in the flow of elastic liquids.Comment: 5 pages text and 4 figures. Submitted to Physical Review Letter

    The Climate-system Historical Forecast Project: providing open access to seasonal forecast ensembles from centers around the globe

    Get PDF
    Fil: Tompkins, Adrian M.. The Abdus Salam; ItaliaFil: Ortiz de Zarate, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Centre National de la Recherche Scientifique; FranciaFil: Saurral, Ramiro Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Centre National de la Recherche Scientifique; FranciaFil: Vera, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Centre National de la Recherche Scientifique; FranciaFil: Saulo, Andrea Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; ArgentinaFil: Merryfield, William J.. Canadian Centre for Climate Modelling and Analysis; CanadáFil: Sigmond, Michael. Canadian Centre for Climate Modelling and Analysis; CanadáFil: Lee, Woo Sung. Canadian Centre for Climate Modelling and Analysis; CanadáFil: Baehr, Johanna. Universitat Hamburg; AlemaniaFil: Braun, Alain. Météo-France; FranciaFil: Amy Butler. National Ocean And Atmospheric Administration; Estados UnidosFil: Déqué, Michel. Météo-France; FranciaFil: Doblas Reyes, Francisco J.. Institució Catalana de Recerca i Estudis Avancats; España. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaFil: Gordon, Margaret. Met Office; Reino UnidoFil: Scaife, Adam A.. University of Exeter; Reino UnidoFil: Yukiko Imada. Japan Meteorological Agency. Meteorological Research Institute. Climate Research Department; JapónFil: Masayoshi Ishii. Japan Meteorological Agency. Meteorological Research Institute. Climate Research Department; JapónFil: Tomoaki Ose. Japan Meteorological Agency. Meteorological Research Institute. Climate Research Department; JapónFil: Kirtman, Ben. University of Miami; Estados UnidosFil: Kumar, Arun. National Ocean And Atmospheric Administration; Estados UnidosFil: Müller, Wolfgang A.. Max-Planck-Institut für Meteorologie; AlemaniaFil: Pirani, Anna. Université Paris-Saclay; FranciaFil: Stockdale, Tim. European Centre for Medium-Range Weather; Reino UnidoFil: Rixen, Michel. World Meteorological Organization. World Climate Research Programme; SuizaFil: Yasuda, Tamaki. Japan Meteorological Agency. Climate Prediction Division; Japó

    Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico

    Get PDF
    This study examines the sensitivity of the North American warm season diurnal cycle of precipitation to changes in horizontal resolution in three atmospheric general circulation models, with a primary focus on how the parameterized moist processes respond to improved resolution of topography and associated local/regional circulations on the diurnal time scale. It is found that increasing resolution (from approximately 2?? to 1/2?? in latitude-longitude) has a mixed impact on the simulated diurnal cycle of precipitation. Higher resolution generally improves the initiation and downslope propagation of moist convection over the Rockies and the adjacent Great Plains. The propagating signals, however, do not extend beyond the slope region, thereby likely contributing to a dry bias in the Great Plains. Similar improvements in the propagating signals are also found in the diurnal cycle over the North American monsoon region as the models begin to resolve the Gulf of California and the surrounding steep terrain. In general, the phase of the diurnal cycle of precipitation improves with increasing resolution, though not always monotonically. Nevertheless, large errors in both the phase and amplitude of the diurnal cycle in precipitation remain even at the highest resolution considered here. These errors tend to be associated with unrealistically strong coupling of the convection to the surface heating and suggest that improved simulations of the diurnal cycle of precipitation require further improvements in the parameterizations of moist convection processes.open37

    An Attenuated Zika Virus Encoding Non-Glycosylated Envelope (E) and Non-Structural Protein 1 (NS1) Confers Complete Protection against Lethal Challenge in a Mouse Model

    Get PDF
    Zika virus (ZIKV), a mosquito-transmitted flavivirus, emerged in the last decade causing serious human diseases, including congenital microcephaly in newborns and Guillain-Barré syndrome in adults. Although many vaccine platforms are at various stages of development, no licensed vaccines are currently available. Previously, we described a mutant MR766 ZIKV (m2MR) bearing an E protein mutation (N154A) that prevented its glycosylation, resulting in attenuation and defective neuroinvasion. To further attenuate m2MR for its potential use as a live viral vaccine, we incorporated additional mutations into m2MR by substituting the asparagine residues in the glycosylation sites (N130 and N207) of NS1 with alanine residues. Examination of pathogenic properties revealed that the virus (m5MR) carrying mutations in E (N154A) and NS1 (N130A and N207A) was fully attenuated with no disease signs in infected mice, inducing high levels of humoral and cell-mediated immune responses, and protecting mice from subsequent lethal virus challenge. Furthermore, passive transfer of sera from m5MR-infected mice into naïve animals resulted in complete protection from lethal challenge. The immune sera from m5MR-infected animals neutralized both African and Asian lineage viruses equally well, suggesting that m5MR virus could be developed as a potentially broad live virus vaccine candidate
    corecore