172 research outputs found

    Photoelectron spectroscopy study of irradiation damage and metal-sulfur bonds of thiol on silver and copper surfaces

    Get PDF
    Self-assembled l-dodecanethiol monolayers (SAMs) on silver and copper surfaces have been characterized with X-ray photoelectron spectroscopy (XPS) using both the synchrotron radiation and conventional Mg Kalpha excitation. Irradiation-induced changes in thiolate SAMs on Cu and Ag were observed. The identification of the sulfur species has been done. Results obtained confirm earlier studies of n-alkanethiols on silver. On copper (C12S/Cu), the observed S 2p spectrum is quite broad but the use of different excitation energies enabled us to identify four sulfur species on the surface. A S 2P(3/2) component of copper thiolate is observed at 162.6 eV. Three more doublets (161.9 eV, 163.2 eV and 163.8 eV) have been observed to develop during irradiation and they are assigned to chemisorbed sulfur on copper, to different dialkylsulfides and to sulfur-sulfur bonding, (C) 2004 Elsevier B.V. All rights reserved

    Preparation of multilayers containing conjugated thiophene-based polyelectrolytes. Layer-by-layer assembly and viscoelastic properties

    Get PDF
    We study the layer-by-layer assembly and properties of polyelectrolyte multilayers containing anionic and cationic poly(alkoxythiophene) derivatives, poly(3-(3'-thienyloxy)propanesulfonate) (P3TOPS) and poly(3-(3'-thienyloxy)propyltriethylammonium) (P3TOPA), together with poly(diallyldimethylammonum chloride) (PDADMA) or poly(styrenesulfonate) (PSS). These polythiophenes are rigid-rod-type polyelectrolytes which tend to aggregate in aqueous medium. Three types of multilayers have been prepared: (P3TOPS/P3TOPA)(n) (all-thiophene films), (P3TOPS/PDADMA)(n), and (PSS/P3TOPA)(n). The layer-by-layer adsorption of polythiophenes was followed by UV-vis spectroscopy and surface plasmon resonance (SPR). Adsorption of P3TOPS and P3TOPA took place within 10 min from dilute aqueous solution (1 mM with respect to monomers). The adsorption of anew polyion layer on top of polythiophene was always accompanied by a partial loss of the polythiophene layer. As the result, the amount of polythiophene in the film oscillated as a function of the number of layers. This behavior was attributed to the adsorption and partial desorption of aggregated polythiophene, supported by atomic force microscope (AFM) images of dry films. Per bilayer, the amount of polythiophene remaining in the film increased linearly and corresponded approximately to the formation of a thiophene monolayer. The viscoelastic properties of the film; also exhibited a marked terminal layer effect in cases where the length and hydrophobicity of the polyions were different. This effect was studied with (PSS/PDADMA) multilayers and was attributed to the formation of loops and tails, All multilayers studied appeared very soft, comparable to protein layers. This softness was attributed mainly to the film/solution interface with a hydrogel-like outer part of the films (zone III)

    Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces

    Get PDF
    We prove optimal integrability results for solutions of the p(x)-Laplace equation in the scale of (weak) Lebesgue spaces. To obtain this, we show that variable exponent Riesz and Wolff potentials map L1 to variable exponent weak Lebesgue spaces

    Water-soluble full-length single-wall carbon nanotube polyelectrolytes: Preparation and characterization

    Get PDF
    HiPco single-wall carbon nanotubes (SWNTs) have been noncovalently modified with ionic pyrene and naphthalene derivatives to prepare water-soluble SWNT polyelectrolytes (SWNT-PEs), which are analogous to polyanions and polycations. The modified nanotubes have been characterized with UV-vis-NIR, fluorescence, Raman and X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The nanotube-adsorbate interactions consist of π-π stacking interactions between the aromatic core of the adsorbate and the nanotube surface and specific contributions because of the substituents. The interaction between nanotubes and adsorbates also involves charge transfer from adsorbates to SWNTs, and with naphthalene sulfonates the role of a free amino group was important. The ionic surface charge density of the modified SWNTs is constant and probably controlled by electrostatic repulsion between like charges. The linear ionic charge density of the modified SWNTs is similar to that of common highly charged polyelectrolytes

    Oxidative Spin-Spray-Assembled Coordinative Multilayers as Platforms for Capacitive Films

    Get PDF
    The spin-spray-assisted layer-by-layer (LbL) assembly technique was used to prepare coordinative oxidative multilayers from Ce(IV), inorganic polyphosphate (PP), and graphene oxide (GO). The films consist of successive tetralayers and have a general structure (PP/Ce/GO/Ce)(n). Such oxidative multilayers have been shown to be a general platform for the electrodeless generation of conducting polymer and melanin-type films. Although the incorporation of GO enhances the film growth, the conventional dip LbL method is very time consuming. We show that the spin-spray method reduces the time required to grow thick multilayers by the order of magnitude and the film growth is linear from the beginning, which implies a stratified structure. We have deposited poly(3,4-ethylenedioxothiophene), PEDOT, on the oxidative multilayers and studied these redox-active films as models for melanin-type capacitive layers for supercapacitors to be used in biodegradable electronics, both before and after the electrochemical reduction of GO to rGO. The amount of oxidant and PEDOT scales linearly with the film thickness, and the charge transfer kinetics is not mass transfer-limited, especially after the reduction of GO. The areal capacitance of the films grows linearly with the film thickness, reaching a value of ca. 1.6 mF cm(-2) with 20 tetralayers, and the specific volumetric (per film volume) and mass (per mass of PEDOT) capacitances are ca. 130 F cm(-3) and 65 F g(-1), respectively. 5,6-Dihydroxyindole can also be polymerized to a redox-active melanin-type film on these oxidative multilayers, with even higher areal capacitance values

    Spatial Structure and Coherent Motion in Dense Planetary Rings Induced by Self-Gravitational Instability

    Get PDF
    We investigate the formation of spatial structure in dense, self-gravitating particle systems such as Saturn's B-ring through local NN-body simulations to clarify the intrinsic physics based on individual particle motion. In such a system, Salo (1995) showed that the formation of spatial structure such as wake-like structure and particle grouping (clump) arises spontaneously due to gravitational instability and the radial velocity dispersion increases as the formation of the wake structure. However, intrinsic physics of the phenomena has not been clarified. We performed local NN-body simulations including mutual gravitational forces between ring particles as well as direct (inelastic) collisions with identical (up to N∌40000N\sim40000) particles. In the wake structure particles no longer move randomly but coherently. We found that particle motion was similar to Keplerian motion even in the wake structure and that the coherent motion was produced since the particles in a clump had similar eccentricity and longitude of perihelion. This coherent motion causes the increase and oscillation in the radial velocity dispersion. The mean velocity dispersion is rather larger in a more dissipative case with a smaller restitution coefficient and/or a larger surface density since the coherence is stronger in the more dissipative case. Our simulations showed that the wavelength of the wake structure was approximately given by the longest wavelength \hs{\lambda}{cr} = 4\pi^2 G\Sigma/\kappa^2 in the linear theory of axisymmetric gravitational instability in a thin disk, where GG, ÎŁ\Sigma, and Îș\kappa are the gravitational constant, surface density, and a epicyclic frequency.Comment: Accepted by Earth, Planets, and Space. 39 pages, 20 figures. PostScript files also available from http://www.geo.titech.ac.jp/nakazawalab/hdaisaka/works
    • 

    corecore