209 research outputs found

    Phosphonic acid derivatized polythiophene: A building block for metal phosphonate and polyelectrolyte multilayers

    Get PDF
    A water-soluble polythiophene with pendant phosphonic acid groups, poly(3-(3'-thienyloxy)propane-phosphonate) (P3TOPP), has been synthesized. Matrix-assisted laser desorption ionization (MALDI) measurements showed that P3TOPP is an oligomer with an average chain length of 10 monomer units. In aqueous solutions it could be electrochemically oxidized and displayed self-acid doping at pH below 13. P3TOPP was used to prepare polyelectrolyte multilayers with poly(diallyldimethylammonium chloride) (PDADMA) and metal phosphonate multilayers with Zr4+ ions by the sequential layer-by-layer technique. The films were characterized by electrochemistry, atomic force microscopy (AFM), UV-vis, IR, and X-ray photoelectron (XPS) spectroscopy. A regular layer-by-layer growth was observed with both types of multilayers. The nature of the films was probed with XPS, which showed that the observed binding energies were characteristic for metal phosphonates and polyelectrolyte multilayers in Zr/P3TOPP and P3T0PP/PDADMA films, respectively. In the former, the Zr:P ratio showed deviation from the theoretical stoichiometry, and the reasons for the nonstoichiometry are discussed. In the latter, the N:P ratio was consistent with the partial deprotonation of the phosphonate groups. The multilayers exhibited both electrochromism and pH-induced halochromism

    Photoelectron spectroscopy study of irradiation damage and metal-sulfur bonds of thiol on silver and copper surfaces

    Get PDF
    Self-assembled l-dodecanethiol monolayers (SAMs) on silver and copper surfaces have been characterized with X-ray photoelectron spectroscopy (XPS) using both the synchrotron radiation and conventional Mg Kalpha excitation. Irradiation-induced changes in thiolate SAMs on Cu and Ag were observed. The identification of the sulfur species has been done. Results obtained confirm earlier studies of n-alkanethiols on silver. On copper (C12S/Cu), the observed S 2p spectrum is quite broad but the use of different excitation energies enabled us to identify four sulfur species on the surface. A S 2P(3/2) component of copper thiolate is observed at 162.6 eV. Three more doublets (161.9 eV, 163.2 eV and 163.8 eV) have been observed to develop during irradiation and they are assigned to chemisorbed sulfur on copper, to different dialkylsulfides and to sulfur-sulfur bonding, (C) 2004 Elsevier B.V. All rights reserved

    Chemisorption of alkyl thiols and S-alkyl thiosulfates on Pt(111) and polycrystalline platinum surfaces

    Get PDF
    The self-assembled monolayers prepared from 1-dodecanethiol (C12SH) or S-dodecylthio sulfate (Bunte salt, C12SSO3Na) have been characterised on polycrystalline gold and platinum surfaces and on Pt(111). Contact angle and impedance measurements show that the film quality decreases in the order Au/C12SH > Pt/C12SH similar to Au/C12SSO3-Na > Pt/C12S SO3Na. XPS measurements show that the S-SO3 bond of organic thiosulfates is broken on platinum surfaces and the state of the surface-bound sulfur is indistinguishable from that of thiolate. On platinum three sulfur species are formed upon SAM formation and we suggest that the catalytic activity of platinum is responsible for their existence in pristine monolayers. (c) 2005 Elsevier B.V. All rights reserved

    Preparation of multilayers containing conjugated thiophene-based polyelectrolytes. Layer-by-layer assembly and viscoelastic properties

    Get PDF
    We study the layer-by-layer assembly and properties of polyelectrolyte multilayers containing anionic and cationic poly(alkoxythiophene) derivatives, poly(3-(3'-thienyloxy)propanesulfonate) (P3TOPS) and poly(3-(3'-thienyloxy)propyltriethylammonium) (P3TOPA), together with poly(diallyldimethylammonum chloride) (PDADMA) or poly(styrenesulfonate) (PSS). These polythiophenes are rigid-rod-type polyelectrolytes which tend to aggregate in aqueous medium. Three types of multilayers have been prepared: (P3TOPS/P3TOPA)(n) (all-thiophene films), (P3TOPS/PDADMA)(n), and (PSS/P3TOPA)(n). The layer-by-layer adsorption of polythiophenes was followed by UV-vis spectroscopy and surface plasmon resonance (SPR). Adsorption of P3TOPS and P3TOPA took place within 10 min from dilute aqueous solution (1 mM with respect to monomers). The adsorption of anew polyion layer on top of polythiophene was always accompanied by a partial loss of the polythiophene layer. As the result, the amount of polythiophene in the film oscillated as a function of the number of layers. This behavior was attributed to the adsorption and partial desorption of aggregated polythiophene, supported by atomic force microscope (AFM) images of dry films. Per bilayer, the amount of polythiophene remaining in the film increased linearly and corresponded approximately to the formation of a thiophene monolayer. The viscoelastic properties of the film; also exhibited a marked terminal layer effect in cases where the length and hydrophobicity of the polyions were different. This effect was studied with (PSS/PDADMA) multilayers and was attributed to the formation of loops and tails, All multilayers studied appeared very soft, comparable to protein layers. This softness was attributed mainly to the film/solution interface with a hydrogel-like outer part of the films (zone III)

    Oxidative Layer-By-Layer Multilayers Based on Metal Coordination: Influence of Intervening Graphene Oxide Layers

    Get PDF
    Layer-by-layer (LbL) fabricated oxidative multilayers consisting of successive layers of inorganic polyphosphate (PP) and Ce(IV) can electrolessly form thin conducting polymer films on their surface. We describe the effect of substituting every second PP layer in the (PP/Ce) multilayers for graphene oxide (GO) as a means of modifying the structure and mechanical properties of these (GO/Ce/PP/Ce) films and enhancing their growth. Both types of LbL films are based on reversible coordinative bonding between the metal ions and the oxygen-bearing groups in PP and GO, instead of purely electrostatic interactions. The GO incorporation leads to the doubling of the areal mass density and to a dry film thickness close to 300 nm after 4 (GO/Ce/PP/Ce) tetralayers. The film roughness increases significantly with thickness. The (PP/Ce) films are soft materials with approximately equal shear storage and loss moduli, but the incorporation of GO doubles the storage modulus. PP displays a marked terminating layer effect and practically eliminates mechanical losses, making the (GO/Ce/PP/Ce) films almost pure soft elastomers. The smoothness of the (PP/Ce) films and the PP-termination effects are attributed to the reversible coordinative bonding. The (GO/Ce/PP/Ce) films oxidize pyrrole and 3,4-ethylenedioxythiophene (EDOT) and form polypyrrole and PEDOT films on their surfaces. These polymer films are considerably thicker than those formed using the (PP/Ce) multilayers with the same nominal amount of cerium layers. The GO sheets interfere with the polymerization reaction and make its kinetics biphasic. The (GO/Ce) multilayers without PP are brittle and thin.</p

    Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces

    Get PDF
    We prove optimal integrability results for solutions of the p(x)-Laplace equation in the scale of (weak) Lebesgue spaces. To obtain this, we show that variable exponent Riesz and Wolff potentials map L1 to variable exponent weak Lebesgue spaces

    Water-soluble full-length single-wall carbon nanotube polyelectrolytes: Preparation and characterization

    Get PDF
    HiPco single-wall carbon nanotubes (SWNTs) have been noncovalently modified with ionic pyrene and naphthalene derivatives to prepare water-soluble SWNT polyelectrolytes (SWNT-PEs), which are analogous to polyanions and polycations. The modified nanotubes have been characterized with UV-vis-NIR, fluorescence, Raman and X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The nanotube-adsorbate interactions consist of π-π stacking interactions between the aromatic core of the adsorbate and the nanotube surface and specific contributions because of the substituents. The interaction between nanotubes and adsorbates also involves charge transfer from adsorbates to SWNTs, and with naphthalene sulfonates the role of a free amino group was important. The ionic surface charge density of the modified SWNTs is constant and probably controlled by electrostatic repulsion between like charges. The linear ionic charge density of the modified SWNTs is similar to that of common highly charged polyelectrolytes

    Oxidative Spin-Spray-Assembled Coordinative Multilayers as Platforms for Capacitive Films

    Get PDF
    The spin-spray-assisted layer-by-layer (LbL) assembly technique was used to prepare coordinative oxidative multilayers from Ce(IV), inorganic polyphosphate (PP), and graphene oxide (GO). The films consist of successive tetralayers and have a general structure (PP/Ce/GO/Ce)(n). Such oxidative multilayers have been shown to be a general platform for the electrodeless generation of conducting polymer and melanin-type films. Although the incorporation of GO enhances the film growth, the conventional dip LbL method is very time consuming. We show that the spin-spray method reduces the time required to grow thick multilayers by the order of magnitude and the film growth is linear from the beginning, which implies a stratified structure. We have deposited poly(3,4-ethylenedioxothiophene), PEDOT, on the oxidative multilayers and studied these redox-active films as models for melanin-type capacitive layers for supercapacitors to be used in biodegradable electronics, both before and after the electrochemical reduction of GO to rGO. The amount of oxidant and PEDOT scales linearly with the film thickness, and the charge transfer kinetics is not mass transfer-limited, especially after the reduction of GO. The areal capacitance of the films grows linearly with the film thickness, reaching a value of ca. 1.6 mF cm(-2) with 20 tetralayers, and the specific volumetric (per film volume) and mass (per mass of PEDOT) capacitances are ca. 130 F cm(-3) and 65 F g(-1), respectively. 5,6-Dihydroxyindole can also be polymerized to a redox-active melanin-type film on these oxidative multilayers, with even higher areal capacitance values

    New insights on the interaction between thiophene derivatives and Au surfaces: the case of 3,4-ethylenedioxythiophene and the relevant polymer.

    Get PDF
    The nature of the interface between electrogenerated poly(3,4-ethylenedioxythiophene) and the Au substrate is studied in detail. In particular, the adsorption of the relevant monomer, namely, 3,4-ethylenedioxythiophene, is investigated and compared with that of other thiophene derivatives. Different deposition procedures have been adopted: very thin films of the thiophene derivatives have been obtained through chemisorption processes from vapor and liquid phases, on Au polycrystalline substrates, Au nano particles possessing different size, and a Au(111) single crystal. Different techniques, operating both in situ and ex situ, have been employed for the characterization of these deposits, that is, X-ray photoemission and surface enhanced Raman spectroscopy. The results show that the poly(3,4-ethylenedioxythiophene)/metal interface is far from being simply constituted by unreacted molecules in contact with the substrate; rather, the formation of oligothiophene species and sulfur atoms at the interface has been ascertained
    • …
    corecore