75 research outputs found

    Trial of Remote Continuous versus Intermittent NEWS monitoring after major surgery (TRaCINg): protocol for a feasibility randomised controlled trial

    Get PDF
    Background: Despite medical advances, major surgery remains high risk. Up to 44% of patients experience postoperative complications, which can have huge impacts for patients and the healthcare system. Early recognition of postoperative complications is crucial in reducing morbidity and preventing long-term disability. The current standard of care is intermittent manual vital signs monitoring, but new wearable remote monitors offer the benefits of continuous vital signs monitoring without limiting the patient’s mobility. The aim of this study is to evaluate the feasibility, acceptability and clinical impacts of continuous remote monitoring after major surgery. Methods: The study is a randomised, controlled, unblinded, parallel group, feasibility trial. Adult patients undergoing elective major surgery will be invited to participate if they have the capacity to provided informed, written consent and do not have a cardiac pacemaker or an allergy to adhesives. Participants will be randomly assigned to receive continuous remote monitoring and normal National Early Warning Score (NEWS) monitoring (intervention group) or normal NEWS monitoring alone (control group). Continuous remote monitoring will be achieved using the SensiumVitals¼ wireless patch which is worn on the patient’s chest and monitors heart rate, respiratory rate and temperature continuously and alerts the nurse when there is deviation from pre-set physiological norms. Participants will be followed up throughout their hospital admission and for 30 days after discharge. Feasibility will be assessed by evaluating recruitment rate, adherence to protocol and randomisation, and the amount of missing data. The acceptability of the patch to nursing staff and patients will be assessed using questionnaires and interviews. Clinical outcomes will include time to antibiotics in cases of sepsis, length of hospital stay, number of critical care admissions and rate of readmission within 30 days of discharge. Discussion: Early detection and treatment of complications minimises the need for critical care, improves patient outcomes, and produces significant cost savings for the healthcare system. Remote continuous monitoring systems have the potential to allow earlier detection of complications, but evidence from the literature is mixed. Demonstrating significant benefit over intermittent monitoring to offset the practical and economic implications of continuous monitoring requires well-controlled studies in high-risk populations to demonstrate significant differences in clinical outcomes; this feasibility trial seeks to provide evidence of how best to conduct such a confirmatory trial. Trial registration: This study is listed on the ISRCTN registry with study ID ISRCTN16601772

    Protocol to profile the bioenergetics of organoids using Seahorse

    Get PDF
    Addressing bioenergetics is key to evaluate the impact of metabolism on the regulation of biological processes and its alteration in disease. Organoids are in vitro grown self-organizing structures derived from healthy and diseased tissue that recapitulate with high fidelity the tissue of origin. Bioenergetics is commonly analyzed by Seahorse XF analysis. However, its application to organoid studies is technically challenging. Here, we share our in-house optimized protocols to examine organoid bioenergetics in response to drugs, gene knockdown, or to characterize the metabolism of specific cell types. For complete details on the use and execution of this protocol, please refer to Ludikhuize et al. (2020)

    Factors that influence nurses' assessment of patient acuity and response to acute deterioration.

    Get PDF
    BACKGROUND: nurses play a crucial role in the early recognition and management of the deteriorating patient. They are responsible for the care they provide to their patients, part of which is the monitoring of vital signs (blood pressure, pulse, respiratory rate and temperature), which are fundamental in the surveillance of deterioration. The aim of this study was to discover what factors influence how nurses assess patient acuity and their response to acute deterioration. METHODS: a generic qualitative approach was used. Some 10 nurses working in an acute NHS trust were interviewed using a semi- structured approach, with equal representation from medical and surgical inpatient wards. RESULTS: the main themes identified were collegial relationships, intuition, and interpretation of the MEWS system (Modified Early Warning Score). Collegial relationships with the medical staff had some influence on the nurses' assessment, as they tended to accept the medical peers' assessment as absolute, rather than their own assessment. It was also highlighted that nurses relied on the numerical escalation of the MEWS system to identify the deteriorating patient, instead of their own clinical judgement of the situation. Interestingly, the nurses found no difficulty in escalating the patient's care to medical staff when the patient presented with a high MEWS score. The difficulty arose when the MEWS score was low-the participants found it challenging to authenticate their findings. CONCLUSION: this study has identified several confounding factors that influence the ways in which nurses assess patient acuity and their response to acute deterioration. The information provides a crucial step forward in identifying strategies to develop further training

    The effects of an enhanced simulation programme on medical students' confidence responding to clinical deterioration

    Get PDF
    BACKGROUND: Clinical deterioration in adult hospital patients is an identified issue in healthcare practice globally. Teaching medical students to recognise and respond to the deteriorating patient is crucial if we are to address the issue in an effective way. The aim of this study was to evaluate the effects of an enhanced simulation exercise known as RADAR (Recognising Acute Deterioration: Active Response), on medical students’ confidence. METHODS: A questionnaire survey was conducted; the instrument contained three sections. Section 1 focused on students’ perceptions of the learning experience; section 2 investigated confidence. Both sections employed Likert-type scales. A third section invited open responses. Questionnaires were distributed to a cohort of third-year medical students (n = 158) in the North East of Scotland 130 (82 %) were returned for analysis, employing IBM SPSS v18 and ANOVA techniques. RESULTS: Students’ responses pointed to many benefits of the sessions. In the first section, students responded positively to the educational underpinning of the sessions, with all scores above 4.00 on a 5-point scale. There were clear learning outcomes; the sessions were active and engaging for students with an appropriate level of challenge and stress; they helped to integrate theory and practice; and effective feedback on their performance allowed students to reflect and learn from the experience. In section 2, the key finding was that scores for students’ confidence to recognise deterioration increased significantly (p. < .001) as a result of the sessions. Effect sizes (Eta(2)) were high, (0.68–0.75). In the open-ended questions, students pointed to many benefits of the RADAR course, including the opportunity to employ learned procedures in realistic scenarios. CONCLUSIONS: The use of this enhanced form of simulation with simulated patients and the judicious use of moulage is an effective method of increasing realism for medical students. Importantly, it gives them greater confidence in recognising and responding to clinical deterioration in adult patients. We recommend the use of RADAR as a safe and cost-effective approach in the area of clinical deterioration and suggest that there is a need to investigate its use with different patient groups

    Testing effectiveness of the revised Cape Town modified early warning and SBAR systems: a pilot pragmatic parallel group randomised controlled trial

    Get PDF
    Abstract Background Nurses’ recognition of clinical deterioration is crucial for patient survival. Evidence for the effectiveness of modified early warning scores (MEWS) is derived from large observation studies in developed countries. Methods We tested the effectiveness of the paper-based Cape Town (CT) MEWS vital signs observation chart and situation-background-assessment-recommendation (SBAR) communication guide. Outcomes were: proportion of appropriate responses to deterioration, differences in recording of clinical parameters and serious adverse events (SAEs) in intervention and control trial arms. Public teaching hospitals for adult patients in Cape Town were randomised to implementation of the CT MEWS/SBAR guide or usual care (observation chart without track-and-trigger information) for 31 days on general medical and surgical wards. Nurses in intervention wards received training, as they had no prior knowledge of early warning systems. Identification and reporting of patient deterioration in intervention and control wards were compared. In the intervention arm, 24 day-shift and 23 night-shift nurses received training. Clinical records were reviewed retrospectively at trial end. Only records of patients who had given signed consent were reviewed. Results We recruited two of six CT general hospitals. We consented 363 patients and analysed 292 (80.4%) patient records (n = 150, 51.4% intervention, n = 142, 48.6% control arm). Assistance was summoned for fewer patients with abnormal vital signs in the intervention arm (2/45, 4.4% versus (vs) 11/81, 13.6%, OR 0.29 (0.06–1.39)), particularly low systolic blood pressure. There was a significant difference in recording between trial arms for parameters listed on the MEWS chart but omitted from the standard observations chart: oxygen saturation, level of consciousness, pallor/cyanosis, pain, sweating, wound oozing, pedal pulses, glucose concentration, haemoglobin concentration, and “looks unwell”. SBAR was used twice. There was no statistically significant difference in SAEs (5/150, 3.3% vs 3/143, 2.1% P = 0.72, OR 1.61 (0.38–6.86)). Conclusions The revised CT MEWS observations chart improved recording of certain parameters, but did not improve nurses’ ability to identify early signs of clinical deterioration and to summon assistance. Recruitment of only two hospitals and exclusion of patients too ill to consent limits generalisation of results. Further work is needed on educational preparation for the CT MEWS/SBAR and its impact on nurses’ reporting behaviour. Trial registration Pan African Clinical Trials Registry, PACTR201406000838118. Registered on 2 June 2014, www.pactr.org

    FOXO1, PXK, PYCARD and SAMD9L are differentially expressed by fibroblast-like cells in equine synovial membrane compared to joint capsule

    Get PDF
    Abstract Background The synovial membrane lines the luminal side of the joint capsule in synovial joints. It maintains joint homeostasis and plays a crucial role in equine joint pathology. When trauma or inflammation is induced in a joint, the synovial membrane influences progression of joint damage. Equine synovial membrane research is hampered by a lack of markers of fibroblast-like synoviocytes (FLS) to distinguish FLS from other fibroblast-like cells in musculoskeletal connective tissues. The aim of this study is to identify potential FLS markers of the equine synovial membrane using microarray to compare between gene expression in equine synovial membrane and the joint capsule in metacarpophalangeal joints. Results Microarray analysis of tissues from 6 horses resulted in 1167 up-regulated genes in synovial membrane compared with joint capsule. Pathway analysis resulted in 241 candidate genes. Of these, 15 genes were selected for further confirmation as genes potentially expressed by fibroblast-like synoviocytes. Four genes: FOXO1, PXK, PYCARD and SAMD9L were confirmed in 9 horses by qPCR as differentially expressed in synovial membrane compared to joint capsule. Conclusions In conclusion, FOXO1, PXK, PYCARD and SAMD9L were confirmed as differentially expressed in synovial membrane compared to joint capsule. These four genes are potential markers of fibroblast-like synoviocytes of the synovial membrane. As these genes are overexpressed in synovial membrane compared to joint capsule, these genes could shed light on synovial membrane physiology and its role in joint disease

    Evaluation of the effects of implementing an electronic early warning score system: protocol for a stepped wedge study

    Get PDF
    Background: An Early Warning Score is a clinical risk score based upon vital signs intended to aid recognition of patients in need of urgent medical attention. The use of an escalation of care policy based upon an Early Warning Score is mandated as the standard of practice in British hospitals. Electronic systems for recording vital sign observations and Early Warning Score calculation offer theoretical benefits over paper-based systems. However, the evidence for their clinical benefit is limited. Previous studies have shown inconsistent results. The majority have employed a “before and after” study design, which may be strongly confounded by simultaneously occurring events. This study aims to examine how the implementation of an electronic early warning score system, System for Notification and Documentation (SEND), affects the recognition of clinical deterioration occurring in hospitalised adult patients. Methods: This study is a non-randomised stepped wedge evaluation carried out across the four hospitals of the Oxford University Hospitals NHS Trust, comparing charting on paper and charting using SEND. We assume that more frequent monitoring of acutely ill patients is associated with better recognition of patient deterioration. The primary outcome measure is the time between a patient’s first observations set with an Early Warning Score above the alerting threshold and their subsequent set of observations. Secondary outcome measures are in-hospital mortality, cardiac arrest and Intensive Care admission rates, hospital length of stay and system usability measured using the System Usability Scale. We will also measure Intensive Care length of stay, Intensive Care mortality, Acute Physiology and Chronic Health Evaluation (APACHE) II acute physiology score on admission, to examine whether the introduction of SEND has any effect on Intensive Care-related outcomes. Discussion: The development of this protocol has been informed by guidance from the Agency for Healthcare Research and Quality (AHRQ) Health Information Technology Evaluation Toolkit and Delone and McLeans’s Model of Information System Success. Our chosen trial design, a stepped wedge study, is well suited to the study of a phased roll out. The choice of primary endpoint is challenging. We have selected the time from the first triggering observation set to the subsequent observation set. This has the benefit of being easy to measure on both paper and electronic charting and having a straightforward interpretation. We have collected qualitative measures of system quality via a user questionnaire and organisational descriptors to help readers understand the context in which SEND has been implemented
    • 

    corecore