745 research outputs found

    Probing the Reionization History of the Universe using the Cosmic Microwave Background Polarization

    Get PDF
    The recent discovery of a Gunn--Peterson (GP) trough in the spectrum of the redshift 6.28 SDSS quasar has raised the tantalizing possibility that we have detected the reionization of the universe. However, a neutral fraction (of hydrogen) as small as 0.1% is sufficient to cause the GP trough, hence its detection alone cannot rule out reionization at a much earlier epoch. The Cosmic Microwave Background (CMB) polarization anisotropy offers an alternative way to explore the dark age of the universe. We show that for most models constrained by the current CMB data and by the discovery of a GP trough (showing that reionization occurred at z > 6.3), MAP can detect the reionization signature in the polarization power spectrum. The expected 1-sigma error on the measurement of the electron optical depth is around 0.03 with a weak dependence on the value of that optical depth. Such a constraint on the optical depth will allow MAP to achieve a 1-sigma error on the amplitude of the primordial power spectrum of 6%. MAP with two years (Planck with one year) of observation can distinguish a model with 50% (6%) partial ionization between redshifts of 6.3 and 20 from a model in which hydrogen was completely neutral at redshifts greater than 6.3. Planck will be able to distinguish between different reionization histories even when they imply the same optical depth to electron scattering for the CMB photons.Comment: ApJ version. Added Figure 2 and reference

    Social behavioral impairments in SYNGAP1-related intellectual disability

    Get PDF
    IntroductionDevelopmental synaptopathies are neurodevelopmental disorders caused by genetic mutations disrupting the development and function of neuronal synapses.MethodsWe administered the validated Social Responsiveness Scale, Second Edition (SRS-2) to investigate the phenotypic presentation of social-behavioral impairments for the developmental synaptopathy—SYNGAP1-related Intellectual Disability (SYNGAP1-ID) (n = 32) compared with a phenotypically similar disorder Phelan-McDermid syndrome (PMD) (n = 27) and healthy controls (n = 43). A short form SRS-2 analysis (n = 85) was also conducted.ResultsBoth SYNGAP1-ID and PMD had significantly elevated total and subcategory T-scores, with no significant score differences between SYNGAP1-ID and PMD, consistent between the full and short form. Mild to severe deficiencies in reciprocal social behavior were found in 100% of PMD individuals and 87.1% of SYNGAP1-ID individuals. Surprisingly, a positive correlation between age and total score was discovered for SYNGAP1-ID participants and not found in individuals with PMD or healthy controls.DiscussionThe short form demonstrated greater utility for SYNGAP1-ID participants due to lower item-omission rates. In conclusion, significant impairment in reciprocal social behaviors is highly prevalent in SYNGAP1-ID

    On the Angular Correlation Function of SZ Clusters : Extracting cosmological information from a 2D catalog

    Full text link
    We discuss the angular correlation function of Sunyaev-Zel'dovich (SZ)-detected galaxy clusters as a cosmological probe. As a projection of the real-space cluster correlation function, the angular function samples the underlying SZ catalog redshift distribution. It offers a way to study cosmology and cluster evolution directly with the two-dimensional catalog, even before extensive follow-up observations, thereby facilitating the immediate scientific return from SZ surveys. As a simple illustration of the information content of the angular function, we examine its dependence on the parameter pair Om_m, sigma_8 in flat cosmologies. We discuss sources of modeling uncertainty and consider application to the future Planck SZ catalog, showing how these two parameters and the normalization of the SZ flux-mass relation can be simultaneously found when the local X-ray cluster abundance constraint is included.Comment: 11 pages, 5 figures. A&A, 410, 767; corrected typo, published versio

    Sleep abnormalities in the synaptopathies—SYNGAP1-related intellectual disability and Phelan–McDermid syndrome

    Get PDF
    Neurodevelopmental disorders are frequently associated with sleep disturbances. One class of neurodevelopmental disorders, the genetic synaptopathies, is caused by mutations in genes encoding proteins found at the synapse. Mutations in these genes cause derangement of synapse development and function. We utilized a validated sleep instrument, Children’s Sleep Habits Questionnaire (CSHQ) to examine the nature of sleep abnormalities occurring in individuals with two synaptopathies—Phelan–McDermid syndrome (PMD) (N = 47, male = 23, female = 24, age 1–46 years) and SYNGAP1-related intellectual disability (SYNGAP1-ID) (N = 64, male = 31, female = 33, age 1–64 years), when compared with unaffected siblings (N = 61, male = 25, female = 36, age 1–17 years). We found that both PMD and SYNGAP1-ID have significant sleep abnormalities with SYNGAP1-ID having greater severity of sleep disturbance than PMD. In addition, sleep disturbances were more severe for PMD in individuals 11 years and older compared with those less than 11 years old. Individuals with either disorder were more likely to use sleep aids than unaffected siblings. In conclusion, sleep disturbances are a significant phenotype in the synaptopathies PMD and SYNGAP1-ID. Improved sleep is a viable endpoint for future clinical trials for these neurodevelopmental disorders

    Search for High Energy Gamma Rays from an X-ray Selected Blazar Sample

    Get PDF
    Our understanding of blazars has been greatly increased in recent years by extensive multi-wavelength observations, particularly in the radio, X-ray and gamma-ray regions. Over the past decade the Whipple 10m telescope has contributed to this with the detection of 5 BL Lacertae objects at very high gamma-ray energies. The combination of multi-wavelength data has shown that blazars follow a well-defined sequence in terms of their broadband spectral properties. Together with providing constraints on emission models, this information has yielded a means by which potential sources of TeV emission may be identified and predictions made as to their possible gamma-ray flux. We have used the Whipple telescope to search for TeV gamma-ray emission from eight objects selected from a list of such candidates. No evidence has been found for VHE emission from the objects in our sample, and upper limits have been derived for the mean gamma-ray flux above 390GeV. These flux upper limits are compared with the model predictions and the implications of our results for future observations are discussed.Comment: 15 pages, 2 figures, Accepted for publication in Ap

    Detection of the BL Lac Object H1426+428 at TeV Gamma Ray Energies

    Full text link
    A very high energy (VHE) gamma-ray signal has been detected at the 5.4 sigma level from H1426+428, an x-ray selected BL Lacertae object at a redshift of 0.129. The object was monitored from 1995 - 1998 with the Whipple 10m imaging atmospheric Cherenkov telescope as part of a general blazar survey; the results of these observations, although not statistically significant, were consistently positive. X-ray observations of H1426+428 during 1999 with the BeppoSAX instrument revealed that the peak of its synchrotron spectrum occurs at > 100 keV, leading to the prediction of observable TeV emission from this object. H1426+428 was monitored extensively at the Whipple Observatory during the 1999, 2000, and 2001 observing seasons. The strongest TeV signals were detected in 2000 and 2001. During 2001, an integral flux of 2.04 +/- 0.35 x10e-11 cm-2 s-1 above 280 GeV was recorded from H1426+428. The detection of H1426+428 supports the idea that, as also seen in Markarian 501 and 1ES2344+514, BL Lacertae objects with extremely high synchrotron peak frequencies produce gamma rays in the TeV range.Comment: 35 pages, 7 figures, accepted by ApJ Two upper limits in Table 3 (upper limits for 1995 and 1997) are different from the ApJ versio

    A Search for TeV Gamma-Ray Emission from High-Peaked Flat Spectrum Radio Quasars Using the Whipple Air-Cherenkov Telescope

    Get PDF
    Blazars have traditionally been separated into two broad categories based upon their optical emission characteristics; BL Lacs, with faint or no emission lines, and flat spectrum radio quasars (FSRQs) with prominent, broad emission lines. The spectral energy distribution of FSRQs has generally been thought of as being more akin to the low-peaked BL Lacs, which exhibit a peak in the infrared region of the spectrum, as opposed to high-peaked BL Lacs (HBLs), which exhibit a peak in UV/X-ray region of the spectrum. All blazars currently confirmed as sources of TeV emission are HBLs. Recent surveys have found several FSRQs exhibiting spectral properties similar to HBLs, particularly the synchrotron peak frequency. These objects are potential sources of TeV emission according to several models of blazar jet emission and blazar evolution. Measurements of TeV flux or upper limits could impact existing theories explaining the links between different blazar types and could have a significant impact on our understanding of the nature of objects that are capable of TeV emission. In particular, the presence (or absence) of TeV emission from FSRQs could confirm (or cast doubt upon) recent evolutionary models that expect intermediate objects in a transitionary state between FSRQ and BL Lac. The Whipple 10 meter imaging air-Cherenkov gamma-ray telescope is well suited for TeV gamma-ray observations. Using the Whipple telescope, we have taken data on a small selection of nearby(z<0.1 in most cases), high-peaked FSRQs. Although one of the objects, B2 0321+33, showed marginal evidence of flaring, no significant emission was detected. The implications of this paucity of emission and the derived upper limits are discussed.Comment: accepted for publication in Astrophysical Journa

    A Multi-wavelength View of the TeV Blazar Markarian 421: Correlated Variability, Flaring, and Spectral Evolution

    Get PDF
    We report results from a multi-wavelength monitoring campaign on Mrk 421 over the period of 2003-2004. The source was observed simultaneously at TeV and X-ray energies, with supporting observations frequently carried out at optical and radio wavelengths. The large amount of simultaneous data has allowed us to examine the variability of Mrk 421 in detail. The variabilities are generally correlated between the X-ray and gamma-ray bands, although the correlation appears to be fairly loose. The light curves show the presence of flares with varying amplitudes on a wide range of timescales both at X-ray and TeV energies. Of particular interest is the presence of TeV flares that have no coincident counterparts at longer wavelengths, because the phenomenon seems difficult to understand in the context of the proposed emission models for TeV blazars. We have also found that the TeV flux reached its peak days before the X-ray flux during a giant flare in 2004. Such a difference in the development of the flare presents a further challenge to the emission models. Mrk 421 varied much less at optical and radio wavelengths. Surprisingly, the normalized variability amplitude in optical seems to be comparable to that in radio, perhaps suggesting the presence of different populations of emitting electrons in the jet. The spectral energy distribution (SED) of Mrk 421 is seen to vary with flux, with the two characteristic peaks moving toward higher energies at higher fluxes. We have failed to fit the measured SEDs with a one-zone SSC model; introducing additional zones greatly improves the fits. We have derived constraints on the physical properties of the X-ray/gamma-ray flaring regions from the observed variability (and SED) of the source. The implications of the results are discussed. (Abridged)Comment: 32 pages, 12 figures, to appear in Ap

    Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics

    Full text link
    Very-high energy (VHE) gamma quanta contribute only a minuscule fraction - below one per million - to the flux of cosmic rays. Nevertheless, being neutral particles they are currently the best "messengers" of processes from the relativistic/ultra-relativistic Universe because they can be extrapolated back to their origin. The window of VHE gamma rays was opened only in 1989 by the Whipple collaboration, reporting the observation of TeV gamma rays from the Crab nebula. After a slow start, this new field of research is now rapidly expanding with the discovery of more than 150 VHE gamma-ray emitting sources. Progress is intimately related with the steady improvement of detectors and rapidly increasing computing power. We give an overview of the early attempts before and around 1989 and the progress after the pioneering work of the Whipple collaboration. The main focus of this article is on the development of experimental techniques for Earth-bound gamma-ray detectors; consequently, more emphasis is given to those experiments that made an initial breakthrough rather than to the successors which often had and have a similar (sometimes even higher) scientific output as the pioneering experiments. The considered energy threshold is about 30 GeV. At lower energies, observations can presently only be performed with balloon or satellite-borne detectors. Irrespective of the stormy experimental progress, the success story could not have been called a success story without a broad scientific output. Therefore we conclude this article with a summary of the scientific rationales and main results achieved over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic rays, gamma rays and neutrinos: A survey of 100 years of research
    • 

    corecore