36 research outputs found

    Modelling task-dependent eye guidance to objects in pictures

    Get PDF
    We introduce a model of attentional eye guidance based on the rationale that the deployment of gaze is to be considered in the context of a general action-perception loop relying on two strictly intertwined processes: sensory processing, depending on current gaze position, identi\ufb01es sources of information that are most valuable under the given task; motor processing links such information with the oculomotor act by sampling the next gaze position and thus performing the gaze shift. In such a framework, the choice of where to look next is taskdependent and oriented to classes of objects embedded within pictures of complex scenes. The dependence on task is taken into account by exploiting the value and the payoff of gazing at certain image patches or proto-objects that provide a sparse representation of the scene objects. The different levels of the action-perception loop are represented in probabilistic form and eventually give rise to a stochastic process that generates the gaze sequence. This way the model also accounts for statistical properties of gaze shifts such as individual scan path variability. Results of the simulations are compared either with experimental data derived from publicly available datasets and from our own experiments

    Justice (Vol. 9, Iss. 9)

    Get PDF
    Justice was the official publication of the International Ladies’ Garment Workers’ Union ILGWU from 1919 to 1995. Editions of Justice were published in English, Italian, Spanish, and Yiddish. When compared side by side, the content of some of these different editions of Justice shows significant differences. This is the English-language edition of Justice.Justice_9_18.pdf: 49 downloads, before Oct. 1, 2020

    Subtle visuomotor difficulties in preclinical Alzheimer's disease

    Get PDF
    Background: Individuals with preclinical Alzheimer's disease (Pre-AD) present nonimpaired cognition, as measured by standard neuropsychological tests. However, detecting subtle difficulties in cognitive functions may be necessary for an early diagnosis and intervention. Objectives: A new computer-based visuomotor coordination task (VMC) was developed to investigate the possible presence of early visuomotor difficulties in Pre-AD individuals. Associations between VMC task performance and AD biomarkers were studied. The influence of ApoE status on participants' performance was addressed, as well as the relationship between performance and subjective cognitive decline (SCD). Methods: Sixty-six cognitively normal (CN) elders (19 Pre-AD and 47 control participants [CTR]) and 15 patients with AD performed the VMC task, which consisted in executing visually guided goal-directed movements that required the coordination of the visual and motor systems. All participants underwent ApoE analysis and lumbar puncture. CN participants also completed an extensive standard neuropsychological battery. Results: Despite presenting normal cognition in standard tests, Pre-AD participants exhibited higher response times (RTs) to complete the VMC task than CTR (p < .01). Besides, patients with AD showed higher RTs than CTR (p < .001) and Pre-AD (p < .05), and more errors than CTR (p < .005). RTs in ApoE4 carriers were higher than that observed in ApoE4 noncarriers (p < .01). In CN individuals, RTs were related to amyloid β-protein 42 (AB42) biomarker (p < .01) and informant-rated SCD (p < .01). Conclusions: The VMC task is able to discriminate Pre-AD from CTR individuals. Moreover, VMC results are associated with AB42 levels in CN individuals, suggesting that visuomotor dysfunction may be a sensitive marker of Pre-AD

    Pain in Amyotrophic Lateral Sclerosis: A Neglected Aspect of Disease

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder marked by progressive loss of motor neurons, muscle wasting, and respiratory dysfunction. With disease progression, secondary symptoms arise creating new problematic conditions for ALS patients. Amongst these is pain. Although not a primary consequence of disease, pain occurs in a substantial number of individuals. Yet, studies investigating its pathomechanistic properties in the ALS patient are lacking. Therefore, more exploratory efforts into its scope, severity, impact, and treatment should be initiated. Several studies investigating the use of Clostridial neurotoxins for the reduction of pain in ALS patients suggest the potential for a neural specific approach involving focal drug delivery. Gene therapy represents a way to accomplish this. Therefore, the use of viral vectors to express transgenes that modulate the nociceptive cascade could prove to be an effective way to achieve meaningful benefit in conditions of pain in ALS

    Genetic Rodent Models of Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the selective death of motor neurons in the motor cortex, brainstem, and spinal cord. A large number of rodent models are available that show motor neuron death and a progressive motor phenotype that is more or less reminiscent of what occurs in patients. These rodent models contain genes with spontaneous or induced mutations or (over) express different (mutant) genes. Some of these models have been of great value to delineate potential pathogenic mechanisms that cause and/or modulate selective motor neuron degeneration. In addition, these genetic rodent models play a crucial role in testing and selecting potential therapeutics that can be used to treat ALS and/or other motor neuron disorders. In this paper, we give a systematic overview of the most important genetic rodent models that show motor neuron degeneration and/or develop a motor phenotype. In addition, we discuss the value and limitations of the different models and conclude that it remains a challenge to find more and better rodent models based on mutations in new genes causing ALS

    Student Life, November 18, 1910, Vol. 9, No. 9

    Get PDF
    Weekly student newspaper of Utah State University in Logan.https://digitalcommons.usu.edu/newspapers/1536/thumbnail.jp

    Therapy Development for Spinal Muscular Atrophy in SMN Independent Targets

    Get PDF
    Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder, leading to progressive muscle weakness, atrophy, and sometimes premature death. SMA is caused by mutation or deletion of the survival motor neuron-1 (SMN1) gene. An effective treatment does not presently exist. Since the severity of the SMA phenotype is inversely correlated with expression levels of SMN, the SMN-encoded protein, SMN is the most important therapeutic target for development of an effective treatment for SMA. In recent years, numerous SMN independent targets and therapeutic strategies have been demonstrated to have potential roles in SMA treatment. For example, some neurotrophic, antiapoptotic, and myotrophic factors are able to promote survival of motor neurons or improve muscle strength shown in SMA mouse models or clinical trials. Plastin-3, cpg15, and a Rho-kinase inhibitor regulate axonal dynamics and might reduce the influences of SMN depletion in disarrangement of neuromuscular junction. Stem cell transplantation in SMA model mice resulted in improvement of motor behaviors and extension of survival, likely from trophic support. Although most therapies are still under investigation, these nonclassical treatments might provide an adjunctive method for future SMA therapy

    A Compression Based Distance Measure for Texture

    Full text link
    corecore