112 research outputs found

    Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation

    Get PDF
    The emission wavelength of a laser is physically predetermined by the gain medium used. Consequently, arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optical parametric generation, requiring complex optical setups and spectrally sliced supercontinuum, taking advantage of a simpler fiber technology: a fixed-wavelength pump laser pulse is converted into a spectrally very broadband output, from which the required resulting wavelength is then optically filtered. Unfortunately, this process is associated with an inherently poor noise figure, which often precludes many realistic applications of such supercontinuum sources. Here, we show that by adding only one passive optical element—a tapered photonic crystal fiber—to a fixed-wavelength femtosecond laser, one can in a very simple manner resonantly convert the laser emission wavelength into an ultra-wide and continuous range of desired wavelengths, with very low inherent noise, and without mechanical realignment of the laser. This is achieved by exploiting the double interplay of nonlinearity and chirp in the laser source and chirp and phase matching in the tapered fiber. As a first demonstration of this simple and inexpensive technology, we present a femtosecond fiber laser continuously tunable across the entire red–green–blue spectral range. © 2017 Chinese Laser Press

    A self-interaction corrected pseudopotential scheme for magnetic and strongly-correlated systems

    Full text link
    Local-spin-density functional calculations may be affected by severe errors when applied to the study of magnetic and strongly-correlated materials. Some of these faults can be traced back to the presence of the spurious self-interaction in the density functional. Since the application of a fully self-consistent self-interaction correction is highly demanding even for moderately large systems, we pursue a strategy of approximating the self-interaction corrected potential with a non-local, pseudopotential-like projector, first generated within the isolated atom and then updated during the self-consistent cycle in the crystal. This scheme, whose implementation is totally uncomplicated and particularly suited for the pseudopotental formalism, dramatically improves the LSDA results for a variety of compounds with a minimal increase of computing cost.Comment: 18 pages, 14 figure

    Modelling charge self-trapping in wide-gap dielectrics: Localization problem in local density functionals

    Full text link
    We discuss the adiabatic self-trapping of small polarons within the density functional theory (DFT). In particular, we carried out plane-wave pseudo-potential calculations of the triplet exciton in NaCl and found no energy minimum corresponding to the self-trapped exciton (STE) contrary to the experimental evidence and previous calculations. To explore the origin of this problem we modelled the self-trapped hole in NaCl using hybrid density functionals and an embedded cluster method. Calculations show that the stability of the self-trapped state of the hole drastically depends on the amount of the exact exchange in the density functional: at less than 30% of the Hartree-Fock exchange, only delocalized hole is stable, at 50% - both delocalized and self-trapped states are stable, while further increase of exact exchange results in only the self-trapped state being stable. We argue that the main contributions to the self-trapping energy such as the kinetic energy of the localizing charge, the chemical bond formation of the di-halogen quasi molecule, and the lattice polarization, are represented incorrectly within the Kohn-Sham (KS) based approaches.Comment: 6 figures, 1 tabl

    The spectral and magnetic properties of α\alpha- and γ\gamma-Ce from the Dynamical Mean-Field Theory and Local Density Approximation

    Full text link
    We have calculated ground state properties and excitation spectra for Ce metal with the {\it ab initio} computational scheme combining local density approximation and dynamical mean-field theory (LDA+DMFT). We considered all electronic states, i.e. correlated f-states and non-correlated s-, p- and d-states. The strong local correlations (Coulomb interaction) among the f-states lead to typical many-body resonances in the partial f-density, such as lower and upper Hubbard band. Additionally the well known Kondo resonance is observed. The s-, p- and d-densities show small to mediate renormalization effects due to hybridization. We observe different Kondo temperatures for α\alpha- and γ\gamma-Ce (TK,α1000KT_{K,\alpha}\approx 1000 K and TK,γ30KT_{K,\gamma}\approx 30 K), due to strong volume dependence of the effective hybridization strength for the localized f-electrons. Finally we compare our results with a variety of experimental data, i.e. from photoemission spectroscopy (PES), inverse photoemission spectroscopy (BIS), resonant inverse photoemission spectroscopy (RIPES) and magnetic susceptibility measurements.Comment: 7 pages, 4 figure

    High-coverage structures of carbon monoxide adsorbed on Pt(111) studied by high-pressure scanning tunneling microscopy

    Get PDF
    High-pressure scanning tunneling microscopy was used to study the room-temperature adsorption of CO on a Pt(111) single-crystal surface in equilibrium with the gas phase. The coverage was found to vary continuously, and over the entire range from 10(-6)-760 Torr pressure-dependent moire patterns were observed, characteristic of a hexagonal or nearly hexagonal CO overlayer. Two different pressure ranges can be distinguished: below 10(-2) Tort, the moire lattice vector is oriented along a 30degrees high-symmetry direction of the substrate, corresponding to a pressure-dependent rotation of the CO overlayer with respect to the (1 x 1) Pt surface lattice, while above 10(-2) Torr, the CO layer angle is independent of the pressure. This behavior is analyzed in terms of the interplay of the repulsive CO-CO interaction potential and the substrate potential

    Group theoretical analysis of symmetry breaking in two-dimensional quantum dots

    Full text link
    We present a group theoretical study of the symmetry-broken unrestricted Hartree-Fock orbitals and electron densities in the case of a two-dimensional N-electron single quantum dot (with and without an external magnetic field). The breaking of rotational symmetry results in canonical orbitals that (1) are associated with the eigenvectors of a Hueckel hamiltonian having sites at the positions determined by the equilibrium molecular configuration of the classical N-electron problem, and (2) transform according to the irreducible representations of the point group specified by the discrete symmetries of this classical molecular configuration. Through restoration of the total-spin and rotational symmetries via projection techniques, we show that the point-group discrete symmetry of the unrestricted Hartree-Fock wave function underlies the appearance of magic angular momenta (familiar from exact-diagonalization studies) in the excitation spectra of the quantum dot. Furthermore, this two-step symmetry-breaking/symmetry-restoration method accurately describes the energy spectra associated with the magic angular momenta.Comment: A section VI.B entitled "Quantitative description of the lowest rotational band" has been added. 16 pages. Revtex with 10 EPS figures. A version of the manuscript with high quality figures is available at http://calcite.physics.gatech.edu/~costas/uhf_group.html For related papers, see http://www.prism.gatech.edu/~ph274c

    Optical nanofibers and spectroscopy

    Full text link
    We review our recent progress in the production and characterization of tapered optical fibers with a sub-wavelength diameter waist. Such fibers exhibit a pronounced evanescent field and are therefore a useful tool for highly sensitive evanescent wave spectroscopy of adsorbates on the fiber waist or of the medium surrounding. We use a carefully designed flame pulling process that allows us to realize preset fiber diameter profiles. In order to determine the waist diameter and to verify the fiber profile, we employ scanning electron microscope measurements and a novel accurate in situ optical method based on harmonic generation. We use our fibers for linear and non-linear absorption and fluorescence spectroscopy of surface-adsorbed organic molecules and investigate their agglomeration dynamics. Furthermore, we apply our spectroscopic method to quantum dots on the surface of the fiber waist and to caesium vapor surrounding the fiber. Finally, towards dispersive measurements, we present our first results on building and testing a single-fiber bi-modal interferometer.Comment: 13 pages, 18 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: changed title, clarification of some points in the text, added references, replacement of Figure 13

    Genetic counselling for psychiatric disorders: accounts of psychiatric health professionals in the United Kingdom

    Get PDF
    Genetic counselling is not routinely offered for psychiatric disorders in the United Kingdom through NHS regional clinical genetics departments. However, recent genomic advances, confirming a genetic contribution to mental illness, are anticipated to increase demand for psychiatric genetic counselling. This is the first study of its kind to employ qualitative methods of research to explore accounts of psychiatric health professionals regarding the prospects for genetic counselling services within clinical psychiatry in the UK. Data were collected from 32 questionnaire participants, and 9 subsequent interviewees. Data analysis revealed that although participants had not encountered patients explicitly demanding psychiatric genetic counselling, psychiatric health professionals believe that such a service would be useful and desirable. Genomic advances may have significant implications for genetic counselling in clinical psychiatry even if these discoveries do not lead to genetic testing. Psychiatric health professionals describe clinical genetics as a skilled profession capable of combining complex risk communication with much needed psychosocial support. However, participants noted barriers to the implementation of psychiatric genetic counselling services including, but not limited to, the complexities of uncertainty in psychiatric diagnoses, patient engagement and ethical concerns regarding limited capacity
    corecore