16,249 research outputs found

    Understanding the roles of the strategic element cobalt in nickel base superalloys

    Get PDF
    The United States imports over 90% of its cobalt, chromium, columbium, and tantalum, all key elements in high temperature nickel base superalloys for aircraft gas turbine disks and airfoils. Research progress in understanding the roles of cobalt and some possible substitutes effects on microstructure, mechanical properties, and environmental resistance of turbine alloys is discussed

    Parental rearing style as a predictor of attachment and psychosocial adjustment during young adulthood

    Get PDF
    Parental rearing-styles are crucial for psychosocial adjustment both during childhood and adulthood. The current study examined whether: (a) parental rearing-styles predicted psychosocial adjustment in young-adulthood, (b) this relationship was mediated by attachment styles , and ( c ) gender differences occur in these relationships. Two hundred and forty (103 male and 132 female) university students completed measures assessing parental rearing-style , current attachment style, romantic relationship satisfaction, friendship quality, self-esteem, and social competence. Multigroup structural equation modelling, conducted separately by gender, revealed that parental rearing-style predicted psychosocial adjustment during young-adulthood. Further, there was also evidence of gender differences and that self-models and other-models of attachment mediated this relationship. Together, these findings reinforce the importance of perceived parental rearing-style for subsequent psychosocial adjustment

    Microgravity nucleation and particle coagulation experiments support

    Get PDF
    This project is a part of a program at GSFC to study to formation and growth of cosmic dust grain analogs under terrestrial as well as microgravity conditions. Its primary scientific objective is to study the homogeneous nucleation of refractory metal vapors and a variety of their oxides among others, while the engineering, and perhaps a more immediate objective is to develop a system capable of producing mono-dispersed, homogeneous suspensions of well-characterized refractory particles for various particle interaction experiments aboard the Space Shuttle and Space Station Freedom. Both of these objectives are to be met by a judicious combination of laboratory experiments on the ground and aboard NASA's KC-135 experimental research aircraft. Major effort during the current reporting period was devoted to the evaluation of our very successful first series of microgravity test runs in Feb. 1990. Although the apparatus performed well, it was decided to 'repackage' the equipment for easier installation on the KC-135 and access to various components. It will now consist of three separate racks: one each for the nucleation chamber, the power subsystem, and the electronic packages. The racks were fabricated at the University of Virginia and the assembly of the repackaged units is proceeding well. Preliminary analysis of the video data from the first microgravity flight series was performed and the results appear to display some trends expected from Hale's Scaled Nucleation Theory of 1986. The data acquisition system is currently being refined

    Radiative properties of visible and subvisible Cirrus: Scattering on hexagonal ice crystals

    Get PDF
    One of the main objectives of the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) is to provide a better understanding of the physics of upper level clouds. The focus is on just one specific aspect of cirrus physics, namely on characterizing the radiative properties of single, nonspherical ice particles. The basis for further more extensive studies of the radiative transfer through upper level clouds is provided. Radiation provides a potential mechanism for strong feedback between the divergence of in-cloud radiative flux and the cloud microphysics and ultimately on the dynamics of the cloud. Some aspects of ice cloud microphysics that are relevant to the radiation calculations are described. Next, the Discrete Dipole Approximation (DDA) is introduced and some new results of scattering by irregular crystals are presented. The Anomalous Diffraction Theory (ADT) was adopted to investigate the scattering properties of even larger crystals. In this way the scattering properties of nonspherical particles were determined over a range of particle sizes

    Microgravity nucleation and particle coagulation experiments support

    Get PDF
    Modifications to the nucleation apparatus suggested by our first microgravity flight campaign are complete. These included a complete 'repackaging' of the equipment into three racks along with an improved vapor spout shutter mechanism and additional thermocouples for gas temperature measurements. The 'repackaged' apparatus was used in two KC-135 campaigns: one during the week of June 3, 1991 consisting of two flights with Mg and two with Zn, and another series consisting of three flights with Zn during the week of September 23, 1991. Our effort then was focused on the analysis of these data, including further development of the mathematical models to generate the values of temperature and supersaturation at the observed points of nucleation. The efforts to apply Hale's Scaled Nucleation Theory to our experimental data have met with only limited success, most likely due to still inadequate temperature field determination. Work on the development of a preliminary particle collector system designed to capture particles from the region of nucleation and condensation, as well as from other parts of the chamber, are discussed

    Microgravity nucleation and particle coagulation experiments support

    Get PDF
    Researchers at NASA Goddard Space Flight Center have embarked on a program to study the formation and growth of cosmic grains. This includes experiments on the homogeneous nucleation of refractory vapors of materials such as magnesium, lead, tin, and silicon oxides. As part of this program, the Chemical Engineering Department of the University of Virginia has undertaken to develop a math model for these experiments, to assist in the design and construction of the apparatus, and to analyze the data once the experiments have begun. Status Reports 1 and 2 addressed the design of the apparatus and the development of math models for temperature and concentration fields. The bulk of this report discusses the continued refinement of these models, and the assembly and testing of the nucleation chamber along with its ancillary equipment, which began in the spring of 1988

    Excimer lasers

    Get PDF
    A theoretical and experimental investigation into the possibility of achieving CW discharge pumped excimer laser oscillation is reported. Detailed theoretical modeling of capillary discharge pumping of the XeF and KXe and K2 excimer systems was carried out which predicted the required discharge parameters for reaching laser threshold on these systems. Capillary discharge pumping of the XeF excimer system was investigated experimentally. The experiments revealed a lower excimer level population density than predicted theoretically by about an order of magnitude. The experiments also revealed a fluorine consumption problem in the discharge in agreement with theory
    • …
    corecore