111 research outputs found

    Composition Effects on Kilonova Spectra and Light Curves: I

    Full text link
    The merger of neutron star binaries is believed to eject a wide range of heavy elements into the universe. By observing the emission from this ejecta, scientists can probe the ejecta properties (mass, velocity and composition distributions). The emission (a.k.a. kilonova) is powered by the radioactive decay of the heavy isotopes produced in the merger and this emission is reprocessed by atomic opacities to optical and infra-red wavelengths. Understanding the ejecta properties requires calculating the dependence of this emission on these opacities. The strong lines in the optical and infra-red in lanthanide opacities have been shown to significantly alter the light-curves and spectra in these wavelength bands, arguing that the emission in these wavelengths can probe the composition of this ejecta. Here we study variations in the kilonova emission by varying individual lanthanide (and the actinide uranium) concentrations in the ejecta. The broad forest of lanthanide lines makes it difficult to determine the exact fraction of individual lanthanides. Nd is an exception. Its opacities above 1 micron are higher than other lanthanides and observations of kilonovae can potentially probe increased abundances of Nd. Similarly, at early times when the ejecta is still hot (first day), the U opacity is strong in the 0.2-1 micron wavelength range and kilonova observations may also be able to constrain these abundances

    Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the rr-process calculations

    Full text link
    The rare-earth peak in the rr-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing the uncertainties in rr-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. 158^{158}Nd, 160^{160}Pm, 162^{162}Sm, and 164−166^{164-166}Gd have been measured for the first time and the precisions for 156^{156}Nd, 158^{158}Pm, 162,163^{162,163}Eu, 163^{163}Gd, and 164^{164}Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies S2nS_{2n} and neutron pairing energy metrics DnD_n. The data do not support the existence of a subshell closure at N=100N=100. Neutron pairing has been found to be weaker than predicted by theoretical mass models. The impact on the calculated rr-process abundances has been studied. Substantial changes resulting in a smoother abundance distribution and a better agreement with the solar rr-process abundances are observed.Comment: 8 pages, 4 figures, accepted for publication in Physical Review Letter

    Constraining inputs to realistic kilonova simulations through comparison to observed rr-process abundances

    Full text link
    Kilonovae, one source of electromagnetic emission associated with neutron star mergers, are powered by the decay of radioactive isotopes in the neutron-rich merger ejecta. Models for kilonova emission consistent with the electromagnetic counterpart to GW170817 predict characteristic abundance patterns, determined by the relative balance of different types of material in the outflow. Assuming the observed source is prototypical, this inferred abundance pattern in turn must match rr-process abundances deduced by other means, such as what is observed in the solar system. We report on analysis comparing the input mass-weighted elemental compositions adopted in our radiative transfer simulations to the mass fractions of elements in the Sun, as a practical prototype for the potentially universal abundance signature from neutron-star mergers. We characterize the extent to which our parameter inference results depend on our assumed composition for the dynamical and wind ejecta and examine how the new results compare to previous work. We find that a dynamical ejecta composition calculated using the FRDM2012 nuclear mass and FRLDM fission models with extremely neutron-rich ejecta (Ye=0.035Y_{\rm{e}} = 0.035) along with moderately neutron-rich (Ye=0.27Y_{\rm e} = 0.27) wind ejecta composition yields a wind-to-dynamical mass ratio of Mw/MdM_{\rm{w}}/M_{\rm{d}} = 0.47 which best matches the observed AT2017gfo kilonova light curves while also producing the best-matching abundance of neutron-capture elements in the solar system.Comment: 16 pages, 9 figures, submitted to PR

    Executive Summary of the Topical Program: Nuclear Isomers in the Era of FRIB

    Full text link
    We report on the Facility for Rare Isotope Beams (FRIB) Theory Alliance topical program "Nuclear Isomers in the Era of FRIB". We outline the many ways isomers influence and contribute to nuclear science and technology, especially in the four FRIB pillars: properties of rare isotopes, nuclear astrophysics, fundamental symmetries, and applications for the nation and society. We conclude with a resolution stating our recommendation that the nuclear physics community actively pursue isomer research. A white paper is forthcoming.Comment: 4 pages including reference

    ß-delayed neutron emission of r-process nuclei at the N=82 shell closure

    Get PDF
    Theoretical models of ß-delayed neutron emission are used as crucial inputs in r-process calculations. Benchmarking the predictions of these models is a challenge due to a lack of currently available experimental data. In this work the ß-delayed neutron emission probabilities of 33 nuclides in the important mass regions south and south-west of 132Sn are presented, 16 for the first time. The measurements were performed at RIKEN using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The values presented constrain the predictions of theoretical models in the region, affecting the final abundance distribution of the second r-process peak at .Peer ReviewedArticle signat per 58 autors/es J. Liu, S. Bae, N.T. Brewer, C.G. Bruno, R. Caballero-Folch, P.J. Coleman-Smith, I. Dillmann, C. Domingo-Pardo, A. Fijalkowska, N. Fukuda, S. Go, C.J. Griffin, R. Grzywacz, J. Ha, L. J. Harkness-Brennan, T. Isobe, D. Kahl, L.H. Khiem, G.G. Kiss, A. Korgul, S. Kubono, M. Labiche, I. Lazarus, P. Morrall, M.R. Mumpower, N. Nepal, R.D. Page, M. Piersa , V.F.E. Pucknell , B.C. Rasco, B. Rubio, K.P. Rykaczewski , H. Sakurai , Y. Shimizu , D.W. Stracener, T. Sumikama , H. Suzuki, J.L. Tain , H. Takeda, A. Tarifeño-Saldivia, A. Tolosa-Delgado , M. Wolinska-Cichocka , R. YokoyamaPostprint (author's final draft

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure
    • 

    corecore