3,700 research outputs found

    Compensator improvement for multivariable control systems

    Get PDF
    A theory and the associated numerical technique are developed for an iterative design improvement of the compensation for linear, time-invariant control systems with multiple inputs and multiple outputs. A strict constraint algorithm is used in obtaining a solution of the specified constraints of the control design. The result of the research effort is the multiple input, multiple output Compensator Improvement Program (CIP). The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the dynamic compensation matrix so that the system satisfies frequency domain specifications. In this exposition, the underlying principles of the multivariable CIP algorithm are presented and the practical utility of the program is illustrated with space vehicle related examples

    An innovative approach to compensator design

    Get PDF
    The design is considered of a computer-aided-compensator for a control system from a frequency domain point of view. The design technique developed is based on describing the open loop frequency response by n discrete frequency points which result in n functions of the compensator coefficients. Several of these functions are chosen so that the system specifications are properly portrayed; then mathematical programming is used to improve all of these functions which have values below minimum standards. To do this, several definitions in regard to measuring the performance of a system in the frequency domain are given, e.g., relative stability, relative attenuation, proper phasing, etc. Next, theorems which govern the number of compensator coefficients necessary to make improvements in a certain number of functions are proved. After this a mathematical programming tool for aiding in the solution of the problem is developed. This tool is called the constraint improvement algorithm. Then for applying the constraint improvement algorithm generalized, gradients for the constraints are derived. Finally, the necessary theory is incorporated in a Computer program called CIP (compensator Improvement Program). The practical usefulness of CIP is demonstrated by two large system examples

    Theory of imaging a photonic crystal with transmission near-field optical microscopy

    Full text link
    While near-field scanning optical microscopy (NSOM) can provide optical images with resolution much better than the diffraction limit, analysis and interpretation of these images is often difficult. We present a theory of imaging with transmission NSOM that includes the effects of tip field, tip/sample coupling, light propagation through the sample and light collection. We apply this theory to analyze experimental NSOM images of a nanochannel glass (NCG) array obtained in transmission mode. The NCG is a triangular array of dielectric rods in a dielectric glass matrix with a two-dimensional photonic band structure. We determine the modes for the NCG photonic crystal and simulate the observed data. The calculations show large contrast at low numerical aperture (NA) of the collection optics and detailed structure at high NA consistent with the observed images. We present calculations as a function of NA to identify how the NCG photonic modes contribute to and determine the spatial structure in these images. Calculations are presented as a function of tip/sample position, sample index contrast and geometry, and aperture size to identify the factors that determine image formation with transmission NSOM in this experiment.Comment: 28 pages of ReVTex, 14 ps figures, submitted to Phys. Rev.

    Aerodynamic Analysis of Simulated Heat Shield Recession for the Orion Command Module

    Get PDF
    The aerodynamic effects of the recession of the ablative thermal protection system for the Orion Command Module of the Crew Exploration Vehicle are important for the vehicle guidance. At the present time, the aerodynamic effects of recession being handled within the Orion aerodynamic database indirectly with an additional safety factor placed on the uncertainty bounds. This study is an initial attempt to quantify the effects for a particular set of recessed geometry shapes, in order to provide more rigorous analysis for managing recession effects within the aerodynamic database. The aerodynamic forces and moments for the baseline and recessed geometries were computed at several trajectory points using multiple CFD codes, both viscous and inviscid. The resulting aerodynamics for the baseline and recessed geometries were compared. The forces (lift, drag) show negligible differences between baseline and recessed geometries. Generally, the moments show a difference between baseline and recessed geometries that correlates with the maximum amount of recession of the geometry. The difference between the pitching moments for the baseline and recessed geometries increases as Mach number decreases (and the recession is greater), and reach a value of -0.0026 for the lowest Mach number. The change in trim angle of attack increases from approx. 0.5deg at M = 28.7 to approx. 1.3deg at M = 6, and is consistent with a previous analysis with a lower fidelity engineering tool. This correlation of the present results with the engineering tool results supports the continued use of the engineering tool for future work. The present analysis suggests there does not need to be an uncertainty due to recession in the Orion aerodynamic database for the force quantities. The magnitude of the change in pitching moment due to recession is large enough to warrant inclusion in the aerodynamic database. An increment in the uncertainty for pitching moment could be calculated from these results and included in the development of the aerodynamic database uncertainty for pitching moment

    Penning traps with unitary architecture for storage of highly charged ions

    Full text link
    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two- magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed

    Re-entrant ferroelectricity in liquid crystals

    Full text link
    The ferroelectric (Sm C^*) -- antiferroelectric (Sm CA^*_A) -- reentrant ferroelectric (re Sm C^*) phase temperature sequence was observed for system with competing synclinic - anticlinic interactions. The basic properties of this system are as follows (1) the Sm C^* phase is metastable in temperature range of the Sm CA^*_A stability (2) the double inversions of the helix handedness at Sm C^* -- Sm CA^*_A and Sm CA^*_A% -- re-Sm C^* phase transitions were found (3) the threshold electric field that is necessary to induce synclinic ordering in the Sm CA^*_A phase decreases near both Sm CA^*_A -- Sm C^* and Sm CA^*_A -- re-Sm C^* phase boundaries, and it has maximum in the middle of the Sm CA^*_A stability region. All these properties are properly described by simple Landau model that accounts for nearest neighboring layer steric interactions and quadrupolar ordering only.Comment: 10 pages, 5 figures, submitted to PR

    Shear modulus of the hadron-quark mixed phase

    Full text link
    Robust arguments predict that a hadron-quark mixed phase may exist in the cores of some "neutron" stars. Such a phase forms a crystalline lattice with a shear modulus higher than that of the crust due to the high density and charge separation, even allowing for the effects of charge screening. This may lead to strong continuous gravitational-wave emission from rapidly rotating neutron stars and gravitational-wave bursts associated with magnetar flares and pulsar glitches. We present the first detailed calculation of the shear modulus of the mixed phase. We describe the quark phase using the bag model plus first-order quantum chromodynamics corrections and the hadronic phase using relativistic mean-field models with parameters allowed by the most massive pulsar. Most of the calculation involves treating the "pasta phases" of the lattice via dimensional continuation, and we give a general method for computing dimensionally continued lattice sums including the Debye model of charge screening. We compute all the shear components of the elastic modulus tensor and angle average them to obtain the effective (scalar) shear modulus for the case where the mixed phase is a polycrystal. We include the contributions from changing the cell size, which are necessary for the stability of the lower-dimensional portions of the lattice. Stability also requires a minimum surface tension, generally tens of MeV/fm^2 depending on the equation of state. We find that the shear modulus can be a few times 10^33 erg/cm^3, two orders of magnitude higher than the first estimate, over a significant fraction of the maximum mass stable star for certain parameter choices.Comment: 22 pages, 12 figures, version accepted by Phys. Rev. D, with the corrections to the shear modulus computation and Table I given in the erratu

    Formation of plasma around a small meteoroid: 1. Kinetic theory

    Full text link
    This article is a companion to Dimant and Oppenheim [2017] https://doi.org/10.1002/2017JA023963.This paper calculates the spatial distribution of the plasma responsible for radar head echoes by applying the kinetic theory developed in the companion paper. This results in a set of analytic expressions for the plasma density as a function of distance from the meteoroid. It shows that at distances less than a collisional mean free path from the meteoroid surface, the plasma density drops in proportion to 1/R where R is the distance from the meteoroid center; and, at distances much longer than the mean‐free‐path behind the meteoroid, the density diminishes at a rate proportional to 1/R2. The results of this paper should be used for modeling and analysis of radar head echoes.This work was supported by NSF grant AGS-1244842. (AGS-1244842 - NSF
    corecore