1,698 research outputs found
Local Central Limit Theorem for Determinantal Point Processes
We prove a local central limit theorem (LCLT) for the number of points
in a region in specified by a determinantal point process
with an Hermitian kernel. The only assumption is that the variance of
tends to infinity as . This extends a previous result giving a
weaker central limit theorem (CLT) for these systems. Our result relies on the
fact that the Lee-Yang zeros of the generating function for ---
the probabilities of there being exactly points in --- all lie on the
negative real -axis. In particular, the result applies to the scaled bulk
eigenvalue distribution for the Gaussian Unitary Ensemble (GUE) and that of the
Ginibre ensemble. For the GUE we can also treat the properly scaled edge
eigenvalue distribution. Using identities between gap probabilities, the LCLT
can be extended to bulk eigenvalues of the Gaussian Symplectic Ensemble (GSE).
A LCLT is also established for the probability density function of the -th
largest eigenvalue at the soft edge, and of the spacing between -th neigbors
in the bulk.Comment: 12 pages; claims relating to LCLT for Pfaffian point processes of
version 1 withdrawn in version 2 and replaced by determinantal point
processes; improved presentation version
Remark on the (Non)convergence of Ensemble Densities in Dynamical Systems
We consider a dynamical system with state space , a smooth, compact subset
of some , and evolution given by , , ;
is invertible and the time may be discrete, , , or continuous, . Here we show that starting with a
continuous positive initial probability density , with respect
to , the smooth volume measure induced on by Lebesgue measure on , the expectation value of , with respect to any
stationary (i.e. time invariant) measure , is linear in , . depends only on and vanishes
when is absolutely continuous wrt .Comment: 7 pages, plain TeX; [email protected],
[email protected], [email protected], to appear in Chaos: An
Interdisciplinary Journal of Nonlinear Science, Volume 8, Issue
Metastability in the two-dimensional Ising model with free boundary conditions
We investigate metastability in the two dimensional Ising model in a square
with free boundary conditions at low temperatures. Starting with all spins down
in a small positive magnetic field, we show that the exit from this metastable
phase occurs via the nucleation of a critical droplet in one of the four
corners of the system. We compute the lifetime of the metastable phase
analytically in the limit , and via Monte Carlo simulations at
fixed values of and and find good agreement. This system models the
effects of boundary domains in magnetic storage systems exiting from a
metastable phase when a small external field is applied.Comment: 24 pages, TeX fil
The asymmetric Exclusion Process and Brownian Excursions
We consider the totally asymmetric exclusion process (TASEP) in one dimension
in its maximal current phase. We show, by an exact calculation, that the
non-Gaussian part of the fluctuations of density can be described in terms of
the statistical properties of a Brownian excursion. Numerical simulations
indicate that the description in terms of a Brownian excursion remains valid
for more general one dimensional driven systems in their maximal current phase.Comment: 23 pages, 1 figure, in latex, e-mail addresses: [email protected],
[email protected], [email protected]
- …
