1,698 research outputs found

    Local Central Limit Theorem for Determinantal Point Processes

    Get PDF
    We prove a local central limit theorem (LCLT) for the number of points N(J)N(J) in a region JJ in Rd\mathbb R^d specified by a determinantal point process with an Hermitian kernel. The only assumption is that the variance of N(J)N(J) tends to infinity as J|J| \to \infty. This extends a previous result giving a weaker central limit theorem (CLT) for these systems. Our result relies on the fact that the Lee-Yang zeros of the generating function for {E(k;J)}\{E(k;J)\} --- the probabilities of there being exactly kk points in JJ --- all lie on the negative real zz-axis. In particular, the result applies to the scaled bulk eigenvalue distribution for the Gaussian Unitary Ensemble (GUE) and that of the Ginibre ensemble. For the GUE we can also treat the properly scaled edge eigenvalue distribution. Using identities between gap probabilities, the LCLT can be extended to bulk eigenvalues of the Gaussian Symplectic Ensemble (GSE). A LCLT is also established for the probability density function of the kk-th largest eigenvalue at the soft edge, and of the spacing between kk-th neigbors in the bulk.Comment: 12 pages; claims relating to LCLT for Pfaffian point processes of version 1 withdrawn in version 2 and replaced by determinantal point processes; improved presentation version

    Remark on the (Non)convergence of Ensemble Densities in Dynamical Systems

    Full text link
    We consider a dynamical system with state space MM, a smooth, compact subset of some Rn{\Bbb R}^n, and evolution given by TtT_t, xt=Ttxx_t = T_t x, xMx \in M; TtT_t is invertible and the time tt may be discrete, tZt \in {\Bbb Z}, Tt=TtT_t = T^t, or continuous, tRt \in {\Bbb R}. Here we show that starting with a continuous positive initial probability density ρ(x,0)>0\rho(x,0) > 0, with respect to dxdx, the smooth volume measure induced on MM by Lebesgue measure on Rn{\Bbb R}^n, the expectation value of logρ(x,t)\log \rho(x,t), with respect to any stationary (i.e. time invariant) measure ν(dx)\nu(dx), is linear in tt, ν(logρ(x,t))=ν(logρ(x,0))+Kt\nu(\log \rho(x,t)) = \nu(\log \rho(x,0)) + Kt. KK depends only on ν\nu and vanishes when ν\nu is absolutely continuous wrt dxdx.Comment: 7 pages, plain TeX; [email protected], [email protected], [email protected], to appear in Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 8, Issue

    Metastability in the two-dimensional Ising model with free boundary conditions

    Full text link
    We investigate metastability in the two dimensional Ising model in a square with free boundary conditions at low temperatures. Starting with all spins down in a small positive magnetic field, we show that the exit from this metastable phase occurs via the nucleation of a critical droplet in one of the four corners of the system. We compute the lifetime of the metastable phase analytically in the limit T0T\to 0, h0h\to 0 and via Monte Carlo simulations at fixed values of TT and hh and find good agreement. This system models the effects of boundary domains in magnetic storage systems exiting from a metastable phase when a small external field is applied.Comment: 24 pages, TeX fil

    The asymmetric Exclusion Process and Brownian Excursions

    Full text link
    We consider the totally asymmetric exclusion process (TASEP) in one dimension in its maximal current phase. We show, by an exact calculation, that the non-Gaussian part of the fluctuations of density can be described in terms of the statistical properties of a Brownian excursion. Numerical simulations indicate that the description in terms of a Brownian excursion remains valid for more general one dimensional driven systems in their maximal current phase.Comment: 23 pages, 1 figure, in latex, e-mail addresses: [email protected], [email protected], [email protected]
    corecore