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Abstract

We prove a local central limit theorem (LCLT) for the number of points N(J) in a

region J in R
d specified by a determinantal point process with an Hermitian kernel.

The only assumption is that the variance of N(J) tends to infinity as |J | → ∞.

This extends a previous result giving a weaker central limit theorem (CLT) for these

systems. Our result relies on the fact that the Lee-Yang zeros of the generating

function for {E(k;J)} — the probabilities of there being exactly k points in J —

all lie on the negative real z-axis. In particular, the result applies to the scaled bulk

eigenvalue distribution for the Gaussian Unitary Ensemble (GUE) and that of the

Ginibre ensemble. For the GUE we can also treat the properly scaled edge eigenvalue

distribution. Using identities between gap probabilities, the LCLT can be extended

to bulk eigenvalues of the Gaussian Symplectic Ensemble (GSE). A LCLT is also

established for the probability density function of the k-th largest eigenvalue at the

soft edge, and of the spacing between k-th neighbors in the bulk.
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1 Introduction

Determinantal point processes are prominent structures in the theory of random matrices

as well as many other contexts [36]. These are processes for which the k-point correlation

function can be written as a k × k determinant,

ρ(k)(x1, . . . , xk) = det[K(xj , xl)]j,l=1,...,k, (1.1)

where K(x, y) — referred to as the correlation kernel — is independent of k. A necessary

and sufficient condition for (1.1) to represent a point process in J , when K (viewed as the

kernel for an integral operator supported on J) is Hermitian, is that all its eigenvalues be

discrete and lie between zero and one (see e.g.[18]). Such K’s are the only one we shall

consider here.

One of the best known examples of a determinantal point process is given by the

eigenvalues of the random matrices specified by the GUE (Gaussian unitary ensemble): a

Gaussian probability measure on the space of complex N ×N Hermitian matrices which is

unitary invariant and thus unchanged by conjugation by unitary matrices (see e.g. [12, 33]).

By scaling the eigenvalues so that the mean density is unity and taking N → ∞, one

obtains a translation invariant determinantal point process specified by the so-called sine

kernel K(x, y) = sin π(x − y)/π(x − y). The GUE also admits a soft edge scaling in the

neighborhood of the largest eigenvalue, which now involves changing the origin so that

it is centered near the largest eigenvalues, then scaling so the expected spacing between

eigenvalues in this neighbourhood is of order unity in the limit N → ∞. This is called

a soft edge scaling since x = 0 is a soft wall — eigenvalues do occur in the region x > 0

but their density falls off super-exponentially. The resulting point process defined by the

eigenvalues is determinantal with the explicit form of the correlation kernel given by the

Airy kernel K(x, y) = (Ai(x)Ai′(y) − Ai(y)Ai′(x))/(x − y).

The eigenvalues of the Ginibre ensemble of non-Hermitian matrices with standard com-

plex entries give an example of a determinantal point process with a complex Hermitian

kernel: in the limit N → ∞ this is given by K(w, z) = 1
π
e−(|w|2+|z|2)/2ewz̄ (see e.g. [28]),
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where z and w are complex.

It is the purpose of the present paper is to give a local central limit theorem (LCLT)

for the probabilities E(k; J) — conditioned gap probabilities — that there are exactly k

points in J , where k is close to the expected number of points in J , in the limit |J | → ∞,

for the class of determinantal point processes introduced in the first paragraph. We be-

gin in Section 2 by recalling the central limit theorem (CLT) of Costin and Lebowitz [7]

for number fluctuations in determinantal point processes, and then giving an alternative

derivation which uses only the location of the eigenvalues of the underlying integral op-

erator, or equivalently the zeros of the generating function for {E(k; J)}. It is possible

to interpret the generating function as a grand partition function, so in terminology fa-

miliar in the theory of lattice gases, so the corresponding zeros may be referred to as

Lee-Yang zeros. We will then prove the LCLT by using a theorem of Newton to establish

log-concavity of {E(k; J}), which is a known sufficient condition for a CLT to imply a

LCLT. In Section 3 the LCLT theorem is applied to specify the distribution of E(k; J) for

the scaled limits, both bulk and soft edge, of the GUE, and for the Ginibre ensemble of

non-Hermitian complex random matrices (see e.g. [28] for precise definitions). We extend

the results for the GUE to the GSE and in part also to the GOE (Gaussian symplectic and

orthogonal ensemble) by making use of inter-relation formulas from [29]. We furthermore

obtain a LCLT for the distribution of the k-th largest eigenvalue at the soft edge, and the

distribution of the spacing between k-th neighbors in the bulk.

2 A local limit theorem

Our setting is a determinantal point process in R
d. We denote by N(J) the random variable

for the number of points in J ⊂ R
d. We set µJ = mean (N(J)) and σ2

J = Var (N(J)), and

we denote by E(k; J) the probability that there are exactly k points in J . We remark

that in terms of the correlation functions, with ρT
(2) denoting the truncated (connected)
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two-point correlation

µJ =

∫

J

ρ(1)(x) dx, σ2
J =

∫

J

dx1

∫

J

dx2 (ρT
(2)(x1, x2) + ρ(1)(x1)δ(x1 − x2)). (2.1)

Costin and Lebowitz [7] studied N(J) for the particular determinantal point process

corresponding to the eigenvalues of the GUE in the limit N → ∞, scaled so that µJ = |J |
(bulk scaling limit) and thus specified by the sine kernel. They proved the CLT

lim
|J |→∞

(N(J) − µJ)

σJ

d
= η, (2.2)

where η is a standard Gaussian random variable. This was done by showing that as a

consequence of the property that σJ → ∞ as |J | → ∞, all cumulants of the characteristic

function beyond the second vanish for |J | → ∞. In fact the proof makes no explicit use

of the particular determinantal point process under consideration, requiring only that the

corresponding kernel be locally trace class and self-adjoint, and that the variance tends to

infinity, and so (2.2) is a universal property of determinantal point processes in this setting

(see also [37]).

Alternative ways of proving a CLT for determinantal processes were given by Shirai and

Takahashi [35] and by Hough et al. [18]. They used probabilistic methods to show that

N(J) can be viewed as the sum of independent but not identically distributed Bernoulli

random variables xl ∈ {0, 1} with Pr(xl = 1) = λl(J). It follows then from standard

arguments in Teller (see [11, Section XVI.5, Theorem 2] ) that we have a CLT whenever

σ2
J =

∑∞
j=0 λj(J)(1 − λj(J)) → ∞ for J = Js with s → ∞. In view of the relationship

between N(J) and {E(k; J)} this CLT can be written

lim
s→∞

sup
x∈(−∞,∞)

∣

∣

∣

∑

k≤σJs
x+µJs

E(k; Js) − 1√
2π

∫ x

−∞

e−t2/2 dt
∣

∣

∣
= 0. (2.3)

Here we have introduced a parameter s in specifying the region J so as to be able to

consider the natural interval J = (−s, ∞) in the soft edge scaling case, which has |J | = ∞.

For bulk scaling we can take Js = (0, s).

We give below a stronger result based on the location of the Lee-Yang zeros of the
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generating function (grand partition function)

Ξ(z; J) =

∞
∑

k=0

zkE(k; J). (2.4)

Generally [12, Eq. (9.4)]

Ξ(1 − ξ; J) = 1 +

∞
∑

k=1

(−1)k

k!
ξk

∫

J

dx1 · · ·
∫

J

dxd ρ(k)(x1, . . . , xk). (2.5)

In the case of a determinantal point process, and thus ρ(k) given by (1.1), it is well known

(see e.g. [39]) that the sum on the RHS is the expanded form of the determinant of the

Fredholm integral operator with kernel K supported on J , and thus can be written

Ξ(1 − ξ; J) =

∞
∏

l=0

(1 − ξλl(J)), (2.6)

where the λl(J) are eigenvalues of the integral operator K supported on J . Equivalently,

with C independent of z,

Ξ(z; J) = C

∞
∏

l=0

(1 + zµl(J)), µl(J) =
λl(J)

1 − λl(J)
(2.7)

Restricting attention to kernels such that the integral operator is locally trace class and

self-adjoint implies that

1 > λ0(J) ≥ λ1(J) ≥ · · · ≥ λn(J) ≥ · · · ≥ 0, (2.8)

or equivalently ∞ > µ0(J) ≥ µ1(J) ≥ µ2(J) ≥ · · · . The factorisation (2.6) now tells us

that the zeros of Ξ(z; J) all lie on the negative real axis.

This latter fact allows a limiting form for the {E(k; J)} to be determined, which is a

stronger statement than (2.3). It is specified by the following LCLT.

Theorem 1. Consider a determinantal point process labelled by a parameter s, and con-

sider a region J = Js. Suppose that the eigenvalues of the integral operator corresponding

to the correlation kernel K(x, y) supported on Js are discrete and between 0 and 1 as in

(2.8), and that σJs
→ ∞ as s → ∞. We then have that the E(k; J) satisfy the LCLT

lim
s→∞

sup
x∈(−∞,∞)

∣

∣

∣
σJs

E([σJs
x + µJs

]; Js) − 1√
2π

e−x2/2
∣

∣

∣
= 0. (2.9)
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A condition for the passage from a central to a local limit theorem has been given by

Bender [3]. All that is required is that all the zeros of Ξ(z; J) are on the negative real

axis. The proof that this is sufficient goes via the fact that the restriction of zeros to the

negative z-axis implies, by Newton’s theorem (log-concavity of the sequence of elementary

symmetric functions of degree k in the variables {µk(J)}; see e.g. [31]), that the E(k; J)

are log concave, i.e. log E(k + 1; J) − 2 log E(k; J) + log E(k − 1; J) ≤ 0. It is this latter

property which is shown in [3] to be a sufficient condition for the passage from a central to

a local limit theorem. As noted above, the assumption (2.8) implies that the {µk(J)} are

all positive real and thus that the zeros of Ξ(z; J) are all on the negative real axis, thus

establishing the validity of Theorem 1.

3 Random matrix applications

Bulk GUE

Perhaps the best known example of a determinantal point process is the bulk scaled GUE.

In this limit the correlations are given by (1.1) with the sine kernel, and we take J = (0, s).

For this kernel it is a classical result [10] that for large |J |, σ2
J ∼ (1/π2) log |J |+C/π2+(1+

log 2π)/π2, where C denotes Euler’s constant. In particular this diverges for |J | → ∞, or

equivalently for s → ∞ with J = (0, s), so Theorem 1 applies. The sine kernel is one of a

whole class of kernels for which high precision computation of the E(k; J) is available using

Bornemann’s Matlab software [4] based on the Fredholm determinant formula (2.6). Thus

for a given finite |J | we can compute the deviation of the exact value from the limiting

Gaussian form. This is done in Table 1. Note that this deviation is small, differing only in

the third nonzero digit for values of k within 3 standard deviations of the mean.

Soft edge GUE

The GUE also admits a soft edge scaling λ 7→
√

2N + λ/(
√

2N1/6), N → ∞. This has the

effect of moving the origin to the neighborhood of the largest eigenvalue, and making the
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k 7 8 9 10 11 12 13

exact 1.49 × 10−4 0.0161 0.2238 0.5202 0.2234 0.0163 1.61 × 10−4

Gaussian 2.2 × 10−4 0.0166 0.221 0.524 0.221 0.0166 2.2 × 10−4

Table 1: Tabulation of E(k; J) for the bulk GUE, with |J | = 10, and the corresponding

Gaussian form. In the latter µJ = 10 and σJ = 0.761.

mean spacing in this neighborhood of order unity. The corresponding correlations are then

given by (1.1) with K(x, y) equal to the Airy kernel as specified in the second paragraph.

The corresponding probability of there being k eigenvalues in J is denoted Esoft(k; J), with

the natural choice of J being (−s, ∞). The Airy kernel is real symmetric and asymptotically

σ2
J = (1/2π2) log s3/2 [13, eq. (2.30)]), so according to Theorem 1 Esoft(k; J) must obey the

LCLT (2.9). Since the density of the eigenvalues at the soft edge has the asymptotic form

|λ|1/2/π for λ → −∞ [12, eq. (7.69)] one has µJ ∼ 2s3/2/(3π) + O(1), which together with

the asymptotic form of σ2
J is data to be substituted into (2.9). If we take s = (15π)2/3

so that µj ≈ 10, Bornemann’s package gives Esoft(10; (−(15π)2/3, ∞)) = 0.6405, while the

Gaussian form with µJ = 9.99, σ2
J = 0.377 as computed from (2.1) for this choice of J

gives Esoft(10; (−(15π)2/3, ∞)) ≈ 0.649. This shows that the limiting Gaussian form is

quite accurate even for small σJs
.

Conditioning with fixed eigenvalues

For the scaled GUE and some other point processes in one-dimension one can define the

probability densities {psoft(k; (−s, ∞))} for there being a particle at −s and exactly k

particles in (−s, ∞) (for this to make sense the soft wall at x = 0 must be such that

the expected number of particles in x > 0 is finite). Equivalently this is the probability

density function for the distribution of the (k + 1)-th largest eigenvalue. One can also

define {pbulk(k; s)} for there being exactly k particles between two particles at separation

s in the bulk . In the case of the scaled GUE these probability densities also fit into the

setting of Theorem 1 and thus satisfy a LCLT, as we will now demonstrate. Equivalently
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{pbulk(k; s)} is the probability density function for the kth neighbor spacing in the bulk.

Consider first psoft(k; (−s, ∞)) in the case of the soft edge scaled GUE. We can view

this as a gap probability in the soft edge GUE, conditioned to have an eigenvalue at −s.

In such a setting, it is known [19, 15] that the correlation kernel, to be denoted Ksoft
s , can

be written in terms of the usual soft edge scaled GUE kernel according to

Ksoft
s (x, y) = Ksoft(x, y) − Ksoft(x, −s)Ksoft(−s, y)

Ksoft(−s, −s)
. (3.1)

With Ξsoft
s (z; J) :=

∑∞
k=0 zkEs(k; J), the conditions for the validity of the LCLT are met

provided σJs
→ ∞ as s → ∞. In the special case Js = (−s, ∞), and with ρsoft(x)

denoting the soft edge eigenvalue density, it follows from the definitions that Es(k; Js) =

psoft(k; (−s, ∞))/ρsoft(−s), and so with µJs
and σ2

Js
taking the asymptotic values specified

in the second paragraph of this section we obtain

lim
s→∞

σJs
psoft([σJs

x + µJs
]; (−s, ∞))/ρsoft

(1) (−s) =
1√
2π

e−x2/2. (3.2)

If we set ℓ = [σJs
x + µJ ], then for large −s, −s ∼ µℓ − σℓx with µℓ = (3πℓ/2)2/3 and

σℓ = σJs
/ρsoft

(1) (−s), telling us that (3.2) can be rewritten as the statement

lim
ℓ→∞

σℓp
soft(ℓ; (−µℓ + σℓx, ∞)) =

1√
2π

e−x2/2, (3.3)

which is a LCLT with respect to the continuous variable in the probability density. This

latter limit formula is consistent with an analogous result for the fluctuations of the distri-

bution of the k-th largest eigenvalue in the finite N GUE [17], and extended to the GOE

and GSE in [32] (see also [5]).

The reasoning required to establish a LCLT for {pbulk(k; s)} is analogous. Denote by

Kbulk
0 (x, y) the correlation kernel for the determinantal process specified by the sine kernel,

but conditioned to have an eigenvalue at the origin. This is given by a certain Bessel kernel

(see [12, eq. (7.48)] with a = 1). With ρ0,s
(n) (ρ0

(n)) denoting n-point correlation functions

for the the bulk state conditioned to have eigenvalues at 0 and s (at 0) we have

ρ0
(n+1)(x1, . . . , xn, s)/ρ0

(1)(s) = ρ0,s
(n)(x1, . . . , xn),
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so proceeding as in the derivation of (3.1) gives

Kbulk
0,s (x, y) = Kbulk

0 (x, y) − Kbulk
0 (x, s)Kbulk

0 (s, y)

Kbulk
0 (s, s)

.

The variance for large s is determined by Kbulk
0 (x, y), and its variance for large s is de-

termined by Kbulk(x, y), telling us in particular that the variance diverges logarithmically

in this limit. It follows that E0,s(k; J) satisfies a local limit theorem. But E0,s(k; J) =

pbulk(k; s)/ρbulk
(2) (0, s) thus giving a LCTL for the latter ratio, and furthermore ρbulk

(2) (0, s) →
1 as s → ∞ so the LCLT applies to pbulk(k; s) itself. Moreover, the analogous change of

variables in going from (3.2) to (3.3) implies that this can equivalently be regarded as a

LCLT for the continuous variable in the probability density with σk = σJ . Heuristics and

graphical evidence for such a limit theorem dates back to the early literature on random

matrix theory [6, Appendix N, Fig. 9].

Ginibre ensemble

The eigenvalues of random matrices also provide examples of a determinantal point process

in the plane (see e.g. [12, Ch. 15]). In an appropriate scaled N → ∞ limit these all give

rise to the complex Hermitian kernel for the Ginibre ensemble of non-Hermitian standard

complex Gaussian matrices, mentioned in the second paragraph of the Introduction. From

[27] we know that whenever J can be generated from a fixed region J0 by dilation, σ2
J ∼

−(|∂J |/π)
∫

R2 d~r |~r|ρT
(2)(~r,

~0) = |∂J |/(2π3/2), where |∂J | denotes the length of the perimeter

of J , and the final equality follows from the explicit formula ρT
(2)(~r,

~0) = −e−|~r|2 as implied

by the correlation kernel. In particular σJ diverges as |J | → ∞ so the LCLT (2.9) must

hold. In addition to the asymptotic value of σ2
J as noted, we furthermore have µJ = |J |/π2

as data in the LCLT. The fast decay of the truncated correlations allows the number density

CLT to be studied using different methods [27], and furthermore extended to the case of

multiple neighboring regions [24]. However, we don’t know of any alternative way to derive

the LCLT. In the case that J is a disk, the eigenvalues in (2.6) are known explicitly (see

e.g. [12, Prop. 15.5.3]), however this does not persist for other shaped regions, nor is there

an efficient numerical scheme to compute the corresponding Fredholm determinant. We
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remark that in the case of lattice gases there are techniques which allow a LCLT to be

established without consideration of the Lee-Yang zeros [8].

GOE and GSE

We now turn our attention to the bulk scaled GOE and GSE. The statistical states formed

by the eigenvalues are examples of Pfaffian point processes (see e.g. [12, Ch. 6]). A formula

analogous to (2.6) applies for the square of the generating function,

(

Ξ(1 − ξ; J)
)2

= det(I − ξJ−1A), J =





0 1

−1 0





where A is a real 2 × 2 antisymmetric integral operator. As the 2 × 2 matrix integral

operator J−1A is not self adjoint, we have no immediate information as to the location of

the zeros of the generating function. We note however that whenever the zeros of Ξ(z; J)

come in complex conjugate paris whose real parts are non-positive, and σJ → ∞ then the

process satisfies a CLT [25].

Independent of the location of the zeros of the generating function for the GOE and

GSE it was shown in [7] that the CLT (2.2) for the bulk scaled GUE implies a CLT for

the bulk scaled GOE and GSE (the GOE, GUE and GSE correspond to β = 1, 2, 4 in the

Dyson-Mehta scheme and will be so referred to below). This was done by using the facts

that superimposing two GOE spectra at random and integrating every second eigenvalue

gives a GUE distributed spectrum, and that integrating out every second eigenvalue of the

GSE gives the GOE [9, 30, 14]. We have not been able to deduce from these relations a

LCLT for the bulk GOE or GSE. But there are other inter-relations between bulk scaled

random matrix ensembles which are suitable for this purpose [29],

E1(2n; (0, 2s)) + Ebulk
1 (2n ± 1; (0, 2s)) = E±(n; (0, s))

E4(n; (0, s)) =
1

2

(

E+(n; (0, 2s)) + E−(n; (0, 2s))
)

.

On the RHSs the superscripts ± refer to the determinantal point process with kernels

1
2
(Ksin(x, y) ± Ksin(x, −y)), with Ksin referring to the sine kernel, while the subscripts
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k 7 8 9 10 11 12 13

exact β = 1 0.0027 0.0464 0.2427 0.4169 0.2416 0.0467 0.0029

Gaussian 0.0029 0.0463 0.2413 0.4185 0.2413 0.0463 0.0029

exact β = 4 8.65 × 10−7 0.0028 0.1819 0.6307 0.1818 0.0028 9.7 × 10−7

Gaussian 5.7 × 10−6 0.036 0.176 0.641 0.176 0.0036 5.7 × 10−6

Table 2: Tabulation of E(k; J) for the bulk GOE and GSE, with |J | = 10, and the

corresponding Gaussian form. In the latter µJ = 10 and σJ = 0.908 for the GOE, and

σJ = 0.387 for the GSE.

on the LHS refer to the value of β. Theorem 1 applies to E±(n; (0, 2s)) with µ = s and

σ2
± ∼ 1

2
σ2|β=2, so we see immediately that the bulk scaled GSE satisfies the LCLT (2.9) with

σ2|β=4 ∼ σ2|β=2/2, and that the sum E1(2n; (0, 2s))+E1(2n±1; (0, 2s)) satisfies a LCLT. In

particular this latter result implies E1(2n±1; (0, 2s)) are asymptotically equal. Combining

this with an anticipated but as yet unproven unimodal property of {E1(n; (0, s))} would

then imply E1(2n; (0, 2s)) and E1(2n±1; (0, 2s)) are asymptotically equal, and the expected

LCLT for the individual E1(n; (0, s)) would follow.

Using Bornemann’s package we note that as for the bulk scaled GUE, the finite J

probabilities for the bulk scaled GOE and GSE are well approximated by a LCLT. This

we have done in Table 2 for |J | = 10. For the corresponding values of σ2
J , we have made

use of values accurate up to and including the constant: σ2
J ∼ (2/(π2β)) log |J | + Bβ [10].

4 Concluding remarks

While we have provided a rigorous demonstration of a LCLT for the bulk scaled GUE,

GSE and GOE (the latter for E1(2n; (0, 2s)) + E1(2n ± 1; (0, 2s))), more generally one

expects LCLT’s to hold for the β generalization of the Gaussian ensembles [12, §1.9] for

general β > 0. Explicit examples of such LCLT are stated as conjectures in [13, Conj. 6].

For the finite N circular β-ensemble, and with J = (0, φ) a segment of the unit circle,
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a CLT for N(J) in the limit N → ∞ has been established by Killip [23]. As we have

seen, a sufficient condition for a LCLT, which of course implies a CLT, is that the zeros

of (2.4) are all negative real, together with σ(Js) → ∞ as s → ∞. However, as only

the case β = 2 is determinantal, we have no way of establishing such a property, or even

providing numerical evidence, for general β > 0. An exception is the cases β = 1 and

β = 4 which, as commented in the subsection above relating to the GOE and GSE, have

a Pfaffian structure. Making use of this Pfaffian structure, recent numerical studies have

been carried out in [21] which indicate that the zeros of (2.4) for the finite N circular

symplectic ensemble are all on the negative real axis.

After scaling, the spectrum of the Gaussian ensembles of Hermitian matrices has in

a statistical sense just the two types of distinct behaviours — bulk and soft edge. If we

consider instead ensemble of so-called Wishart matrices — matrices X†X where X is a

complex Ginibre matrix, then the constraint that the eigenvalues be positive gives rise to a

new statistical behaviour for eigenvalue near the origin referred to as the hard edge regime

(see e.g. [12, §7.2.1]). When X is a rectangular complex Ginibre matrix of size n × N

(n ≥ N) the hard edge regime is a determinantal point process specified by the Bessel

kernel

K(x, y) =
(

Ja(x
1/2)y1/2J ′

a(y
1/2) − x1/2J ′

a(x
1/2)Ja(y

1/2)
)

/(x − y), a = n − N.

This kernel is real symmetric so (2.8) holds, and we know furthermore that for Js = (0, s)

and s large, σ2
Js

∼ 1
π2 log s [13, Eq. (2.30)] and this in particular diverges. The conditions

of Theorem 1 are therefore met, and thus the corresponding conditioned gap probabilities

satisfy a LCLT.

Our application of Theorem 1 has been focussed on random matrices. But there are

other well known examples of determinantal processes in statistical physics and mathemat-

ics obeying the conditions of the theorem and which thus must then exhibit the same LCLT

(see e.g. [18]). A prominent example, conditional upon the validity of the Montgomery-

Odlyzko law, is the Riemann zeros for large modulus [22]. The Montgomery-Odlyzko law

states that certain statistical properties of the latter, upon appropriate scaling, coincide
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with the bulk scaled GUE and this if valid form a determinantal point process. A proof

that these zeros satisfy a LCLT is an open question. The weaker statement of a CLT was

proved by Fuji [16]; see [34, Th. 1.1] for its form in notation similar to that used in the

present paper. The result of [16] assumes the validity of the Riemann hypothesis. This

assumption has been removed in the recent work [26].

Spin polarized free fermions in dimension d provide examples of determinantal point

processes in higher dimensions [38]. With kF = 2
√

π(Γ(1 + d/2))1/d, the corresponding

bulk scaled (unit density) kernel is computed to equal cF Jd/2(kF ||~x − ~y||)/(kF ||~x − ~y||)d/2

where Jν(x) denotes the usual Bessel function and cF = 2d/2Γ(1 + d/2). When d = 1 this

corresponds to the sine kernel. From the explicit form of the kernel substituted in (2.1),

it is shown in [38] that for J a sphere of radius R, σ2
J/Rd−1 is proportional to log R in the

limit R → ∞, and in particular σ2
J diverges in this limit so Theorem 1 applies.

It should also be mentioned that in random matrix theory one encounters determinan-

tal point processes in which the correlation kernel is real and non-symmetric. A simple

example is the rank one perturbation of the GUE at the soft edge, with parameter tuned

so that it corresponds to the critical regime for the separation of the largest eigenvalue (see

e.g. [12, eq. (7.41)] for the precise form of the kernel). Although Theorem 1 does not apply

directly, since the eigenvalues of the rank one perturbed matrix strictly interlace those of

the unperturbed one (Cauchy interlacing theorem) we see that the LCLT is inherited from

the corresponding LCLT for the soft edge GUE, as is seen by considering for example (3.3).

More recently a family of real non-symmetric kernels involving the Meijer G-function has

been found in the context of studying the hard edge scaling for products of rectangular

complex Gaussian matrices [20], which has recently been shown to be an example of a de-

terninantal point process [1], [2]. A proof of a LCLT for in this setting is an open question,

as is the weaker statement of a CLT.
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