3,232 research outputs found

    Cassiopeia A: dust factory revealed via submillimetre polarimetry

    Full text link
    If Type-II supernovae - the evolutionary end points of short-lived, massive stars - produce a significant quantity of dust (>0.1 M_sun) then they can explain the rest-frame far-infrared emission seen in galaxies and quasars in the first Gyr of the Universe. Submillimetre observations of the Galactic supernova remnant, Cas A, provided the first observational evidence for the formation of significant quantities of dust in Type-II supernovae. In this paper we present new data which show that the submm emission from Cas A is polarised at a level significantly higher than that of its synchrotron emission. The orientation is consistent with that of the magnetic field in Cas A, implying that the polarised submm emission is associated with the remnant. No known mechanism would vary the synchrotron polarisation in this way and so we attribute the excess polarised submm flux to cold dust within the remnant, providing fresh evidence that cosmic dust can form rapidly. This is supported by the presence of both polarised and unpolarised dust emission in the north of the remnant, where there is no contamination from foreground molecular clouds. The inferred dust polarisation fraction is unprecedented (f_pol ~ 30%) which, coupled with the brief timescale available for grain alignment (<300 yr), suggests that supernova dust differs from that seen in other Galactic sources (where f_pol=2-7%), or that a highly efficient grain alignment process must operate in the environment of a supernova remnant.Comment: In press at MNRAS, 10 pages, print in colou

    Evolution of the Dark Matter Distribution with 3-D Weak Lensing

    Full text link
    We present a direct detection of the growth of large-scale structure, using weak gravitational lensing and photometric redshift data from the COMBO-17 survey. We use deep R-band imaging of two 0.25 square degree fields, affording shear estimates for over 52000 galaxies; we combine these with photometric redshift estimates from our 17 band survey, in order to obtain a 3-D shear field. We find theoretical models for evolving matter power spectra and correlation functions, and fit the corresponding shear correlation functions to the data as a function of redshift. We detect the evolution of the power at the 7.7 sigma level given minimal priors, and measure the rate of evolution for 0<z<1. We also fit correlation functions to our 3-D data as a function of cosmological parameters sigma_8 and Omega_Lambda. We find joint constraints on Omega_Lambda and sigma_8, demonstrating an improvement in accuracy by a factor of 2 over that available from 2D weak lensing for the same area.Comment: 11 pages, 4 figures; submitted to MNRA

    Resolving the identification of weak-flying insects during flight: a coupling between rigorous data processing and biology

    Get PDF
    1. Bioacoustic methods play an increasingly important role for the detection of insects in a range of surveillance and monitoring programs. 2. Weak-flying insects evade detection because they do not yield sufficient audio information to capture wingbeat and harmonic frequencies. These inaudible insects often pose a significant threat to food security as pests of key agricultural crops worldwide. 3. Automatic detection of such insects is crucial to the future of crop protection by providing critical information to assess the risk to a crop and the need for preventative measures. 4. We describe an experimental setup designed to derive audio recordings from a range of weak-flying aphids and beetles using an LED array. 5. A rigorous data processing pipeline was developed to extract meaningful features, linked to morphological characteristics, from the audio and harmonic series for six aphid and two beetle species. 6. An ensemble of over 50 bioacoustic parameters was used to achieve species discrimination with a success rate of 80%. The inclusion of the dominant and fundamental frequencies improved prediction between beetles and aphids due to large differences in wingbeat frequencies. 7. At the species level, error rates were minimised when harmonic features were supplemented by features indicative of differences in species’ flight energies

    Combining high conductivity with complete optical transparency: A band-structure approach

    Get PDF
    A comparison of the structural, optical and electronic properties of the recently discovered transparent conducting oxide (TCO), nanoporous Ca12Al14O33, with those of the conventional TCO's (such as Sc-doped CdO) indicates that this material belongs conceptually to a new class of transparent conductors. For this class of materials, we formulate criteria for the successful combination of high electrical conductivity with complete transparency in the visible range. Our analysis suggests that this set of requirements can be met for a group of novel materials called electrides.Comment: 3 pages, 3 figures, submitted for publicatio

    Progressive metabolic impairment underlies the novel nematicidal action of fluensulfone on the potato cyst nematode Globodera pallida

    Get PDF
    Background: Fluensulfone is a new nematicide with an excellent profile of selective toxicity against plant parasitic nematodes. Here, its effects on the physiology and biochemistry of the potato cyst nematode Globodera pallida have been investigated and comparisons made with its effect on the life-span of the free-living nematode Caenorhabditis elegans to provide insight into its mode of action and its selective toxicity. Results: Fluensulfone exerts acute effects (≤ 1 h; ≥ 100 μM) on stylet thrusting and motility of hatched second stage G. pallida juveniles (J2s). Chronic exposure to lower concentrations of fluensulfone (≥ 3 days; ≤ 30 μM), reveals a slowly developing metabolic insult in which G. pallida J2s sequentially exhibit a reduction in motility, loss of a metabolic marker for cell viability, high lipid content and tissue degeneration prior to death. These effects are absent in adults and dauers of the model genetic nematode Caenorhabditis elegans. Conclusion: The nematicidal action of fluensulfone follows a time-course which progresses from an early impact on motility through to an accumulating metabolic impairment, an inability to access lipid stores and death

    On the consistency of scale among experiments, theory, and simulation

    Get PDF
    As a tool for addressing problems of scale, we consider an evolving approach known as the thermodynamically constrained averaging theory (TCAT), which has broad applicability to hydrology. We consider the case of modeling of two-fluid-phase flow in porous media, and we focus on issues of scale as they relate to various measures of pressure, capillary pressure, and state equations needed to produce solvable models. We apply TCAT to perform physics-based data assimilation to understand how the internal behavior influences the macroscale state of two-fluid porous medium systems. A microfluidic experimental method and a lattice Boltzmann simulation method are used to examine a key deficiency associated with standard approaches. In a hydrologic process such as evaporation, the water content will ultimately be reduced below the irreducible wetting-phase saturation determined from experiments. This is problematic since the derived closure relationships cannot predict the associated capillary pressures for these states. We demonstrate that the irreducible wetting-phase saturation is an artifact of the experimental design, caused by the fact that the boundary pressure difference does not approximate the true capillary pressure. Using averaging methods, we compute the true capillary pressure for fluid configurations at and below the irreducible wetting-phase saturation. Results of our analysis include a state function for the capillary pressure expressed as a function of fluid saturation and interfacial area

    Paleohydrological Context for Recent Floods and Droughts in the Fraser River Basin, British Columbia, Canada

    Get PDF
    The recent intensification of floods and droughts in the Fraser River Basin (FRB) of British Columbia has had profound cultural, ecological, and economic impacts that are expected to be exacerbated further by anthropogenic climate change. In part due to short instrumental runoff records, the long-Term stationarity of hydroclimatic extremes in this major North American watershed remains poorly understood, highlighting the need to use high-resolution paleoenvironmental proxies to inform on past streamflow. Here we use a network of tree-ring proxy records to develop 11 subbasin-scale, complementary flood-and drought-season reconstructions, the first of their kind. The reconstructions explicitly target management-relevant flood and drought seasons within each basin, and are examined in tandem to provide an expanded assessment of extreme events across the FRB with immediate implications for water management. We find that past high flood-season flows have been of greater magnitude and occurred in more consecutive years than during the observational record alone. Early 20th century low flows in the drought season were especially severe in both duration and magnitude in some subbasins relative to recent dry periods. Our Fraser subbasin-scale reconstructions provide long-Term benchmarks for the natural flood and drought variability prior to anthropogenic forcing. These reconstructions demonstrate that the instrumental streamflow records upon which current management is based likely underestimate the full natural magnitude, duration, and frequency of extreme seasonal flows in the FRB, as well as the potential severity of future anthropogenically forced events
    • …
    corecore