630 research outputs found

    X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue

    Full text link
    AGN are known to have complex X-ray spectra that depend on both the properties of the accreting SMBH (e.g. mass, accretion rate) and the distribution of obscuring material in its vicinity ("torus"). Often however, simple and even unphysical models are adopted to represent the X-ray spectra of AGN. In the case of blank field surveys in particular, this should have an impact on e.g. the determination of the AGN luminosity function, the inferred accretion history of the Universe and also on our understanding of the relation between AGN and their host galaxies. We develop a Bayesian framework for model comparison and parameter estimation of X-ray spectra. We take into account uncertainties associated with X-ray data and photometric redshifts. We also demonstrate how Bayesian model comparison can be used to select among ten different physically motivated X-ray spectral models the one that provides a better representation of the observations. Despite the use of low-count spectra, our methodology is able to draw strong inferences on the geometry of the torus. For a sample of 350 AGN in the 4 Ms Chandra Deep Field South field, our analysis identifies four components needed to represent the diversity of the observed X-ray spectra: (abridged). Simpler models are ruled out with decisive evidence in favour of a geometrically extended structure with significant Compton scattering. Regarding the geometry of the obscurer, there is strong evidence against both a completely closed or entirely open toroidal geometry, in favour of an intermediate case. The additional Compton reflection required by data over that predicted by toroidal geometry models, may be a sign of a density gradient in the torus or reflection off the accretion disk. Finally, we release a catalogue with estimated parameters such as the accretion luminosity in the 2-10 keV band and the column density, NHN_{H}, of the obscurer.Comment: 28 pages, 18 figures, catalogue available from https://www.mpe.mpg.de/~jbuchner/agn_torus/analysis/cdfs4Ms_cat/, software available from https://github.com/JohannesBuchner/BX

    Unveiling a Population of X-ray Non-Detected AGN

    Full text link
    We define a sample of 27 radio-excess AGN in the Chandra Deep Field North by selecting galaxies that do not obey the radio/infrared correlation for radio-quiet AGN and star-forming galaxies. Approximately 60% of these radio-excess AGN are X-ray undetected in the 2 Ms Chandra catalog, even at exposures of > 1 Ms; 25% lack even 2-sigma X-ray detections. The absorbing columns to the faint X-ray-detected objects are 10^22 cm^-2 < N_H < 10^24 cm^-2, i.e., they are obscured but unlikely to be Compton thick. Using a local sample of radio-selected AGN, we show that a low ratio of X-ray to radio emission, as seen in the X-ray weakly- and non-detected samples, is correlated with the viewing angle of the central engine, and therefore with obscuration. Our technique can explore the proportion of obscured AGN in the distant Universe; the results reported here for radio-excess objects are consistent with but at the low end of the overall theoretical predictions for Compton-thick objects.Comment: Accepted for publication in the Astrophysical Journal, 15 pages, 10 figures, 4 table

    Nuclear quadrupole resonances in compact vapor cells: the crossover from the NMR to the NQR interaction regimes

    Full text link
    We present the first experimental study that maps the transformation of nuclear quadrupole resonances from the pure nuclear quadrupole regime to the quadrupole-perturbed Zeeman regime. The transformation presents an interesting quantum-mechanical problem, since the quantization axis changes from being aligned along the axis of the electric-field gradient tensor to being aligned along the magnetic field. We achieve large nuclear quadrupole shifts for I = 3/2 131-Xe by using a 1 mm^3 cubic cell with walls of different materials. When the magnetic and quadrupolar interactions are of comparable size, perturbation theory is not suitable for calculating the transition energies. Rather than use perturbation theory, we compare our data to theoretical calculations using a Liouvillian approach and find excellent agreement.Comment: 4 pages, 4 figure

    Why Optically--Faint AGN Are Faint: The Spitzer Perspective

    Full text link
    Optically--faint X-ray sources (those with f_X/f_R > 10) constitute about 20% of X-ray sources in deep surveys, and are potentially highly obscured and/or at high redshift. Their faint optical fluxes are generally beyond the reach of spectroscopy. For a sample of 20 optically--faint sources in CDFS, we compile 0.4--24 um photometry, relying heavily on Spitzer. We estimate photometric redshifts for 17 of these 20 sources. We find that these AGN are optically--faint both because they lie at significantly higher redshifts (median z ~ 1.6) than most X-ray--selected AGN, and because their spectra are much redder than standard AGN. They have 2--8 keV X-ray luminosities in the Seyfert range, unlike the QSO--luminosities of optically--faint AGN found in shallow, wide--field surveys. Their contribution to the X-ray Seyfert luminosity function is comparable to that of z>1 optically--bright AGN.Comment: Accepted for publication in the Astrophysical Journa

    A microscopic quantum dynamics approach to the dilute condensed Bose gas

    Full text link
    We derive quantum evolution equations for the dynamics of dilute condensed Bose gases. The approach contains, at different orders of approximation, for cases close to equilibrium, the Gross Pitaevskii equation and the first order Hartree Fock Bogoliubov theory. The proposed approach is also suited for the description of the dynamics of condensed gases which are far away from equilibrium. As an example the scattering of two Bose condensates is discussed.Comment: 8 pages, submitted to Phys. Rev.

    Spitzer Power-law AGN Candidates in the Chandra Deep Field-North

    Get PDF
    We define a sample of 62 galaxies in the Chandra Deep Field-North whose Spitzer IRAC SEDs exhibit the characteristic power-law emission expected of luminous AGN. We study the multiwavelength properties of this sample, and compare the AGN selected in this way to those selected via other Spitzer color-color criteria. Only 55% of the power-law galaxies are detected in the X-ray catalog at exposures of >0.5 Ms, although a search for faint emission results in the detection of 85% of the power-law galaxies at the > 2.5 sigma detection level. Most of the remaining galaxies are likely to host AGN that are heavily obscured in the X-ray. Because the power-law selection requires the AGN to be energetically dominant in the near- and mid-infrared, the power-law galaxies comprise a significant fraction of the Spitzer-detected AGN population at high luminosities and redshifts. The high 24 micron detection fraction also points to a luminous population. The power-law galaxies comprise a subset of color-selected AGN candidates. A comparison with various mid-infrared color selection criteria demonstrates that while the color-selected samples contain a larger fraction of the X-ray luminous AGN, there is evidence that these selection techniques also suffer from a higher degree of contamination by star-forming galaxies in the deepest exposures. Considering only those power-law galaxies detected in the X-ray catalog, we derive an obscured fraction of 68% (2:1). Including all of the power-law galaxies suggests an obscured fraction of < 81% (4:1).Comment: Accepted for publication in the Astrophysical Journal, 27 pages, 20 figures, 5 tables, version with high-resolution figures and online-only tables available at: http://frodo.as.arizona.edu/~jdonley/powerlaw

    Bose-Einstein condensate collapse: a comparison between theory and experiment

    Full text link
    We solve the Gross-Pitaevskii equation numerically for the collapse induced by a switch from positive to negative scattering lengths. We compare our results with experiments performed at JILA with Bose-Einstein condensates of Rb-85, in which the scattering length was controlled using a Feshbach resonance. Building on previous theoretical work we identify quantitative differences between the predictions of mean-field theory and the results of the experiments. Besides the previously reported difference between the predicted and observed critical atom number for collapse, we also find that the predicted collapse times systematically exceed those observed experimentally. Quantum field effects, such as fragmentation, that might account for these discrepancies are discussed.Comment: 4 pages, 2 figure

    Microscopic Dynamics in a Strongly Interacting Bose-Einstein Condensate

    Get PDF
    An initially stable 85Rb Bose-Einstein condensate (BEC) was subjected to a carefully controlled magnetic field pulse in the vicinity of a Feshbach resonance. This pulse probed the strongly interacting regime for the condensate, with calculated values for the diluteness parameter (na^3) ranging from 0.01 to 0.5. The field pulse was observed to cause loss of atoms from the condensate on remarkably short time scales (>=10 microsec). The dependence of this loss on magnetic field pulse shape and amplitude was measured. For triangular pulses shorter than 1 ms, decreasing the pulse length actually increased the loss, until extremely short time scales (a few tens of microseconds) were reached. Such time scales and dependencies are very different from those expected in traditional condensate inelastic loss processes, suggesting the presence of new microscopic BEC physics.Comment: 4 pages in latex2E, 4 eps figures; revised Fig.1, revised scatt.lengths, added discussion, new refs., resubmitted to PR
    • 

    corecore