43 research outputs found

    Sensory Experience Differentially Modulates the mRNA Expression of the Polysialyltransferases ST8SiaII and ST8SiaIV in Postnatal Mouse Visual Cortex

    Get PDF
    Polysialic acid (PSA) is a unique carbohydrate composed of a linear homopolymer of α-2,8 linked sialic acid, and is mainly attached to the fifth immunoglobulin-like domain of the neural cell adhesion molecule (NCAM) in vertebrate neural system. In the brain, PSA is exclusively synthesized by the two polysialyltransferases ST8SiaII (also known as STX) and ST8SiaIV (also known as PST). By modulating adhesive property of NCAM, PSA plays a critical role in several neural development processes such as cell migration, neurite outgrowth, axon pathfinding, synaptogenesis and activity-dependent plasticity. The expression of PSA is temporally and spatially regulated during neural development and a tight regulation of PSA expression is essential to its biological function. In mouse visual cortex, PSA is downregulated following eye opening and its decrease allows the maturation of GABAergic synapses and the opening of the critical period for ocular dominance plasticity. Relatively little is known about how PSA levels are regulated by sensory experience and neuronal activity. Here, we demonstrate that while both ST8SiaII and ST8SiaIV mRNA levels decrease around the time of eye opening in mouse visual cortex, only ST8SiaII mRNA level reduction is regulated by sensory experience. Using an organotypic culture system from mouse visual cortex, we further show that ST8SiaII gene expression is regulated by spiking activity and NMDA-mediated excitation. Further, we show that both ST8SiaII and ST8SiaIV mRNA levels are positively regulated by PKC-mediated signaling. Therefore, sensory experience-dependent ST8SiaII gene expression regulates PSA levels in postnatal visual cortex, thus acting as molecular link between visual activity and PSA expression

    Water Extract from the Leaves of Withania somnifera Protect RA Differentiated C6 and IMR-32 Cells against Glutamate-Induced Excitotoxicity

    Get PDF
    Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty

    Cytoplasmic domain of delta subunit is important for the extra-synaptic targeting of GABA(A) receptor subtypes

    No full text
    GABAA receptors (GABAARs) are hetero-pentameric chloride channels and the primary sites for fast synaptic inhibition. We have expressed recombinant g2 and d subunits of GABAARs in cultured hippocampal neurons to analyze the membrane targeting of synaptic and extrasynaptic GABAARs, a phenomenon not well understood. Our data demonstrate that the synaptic targeting of g2-containing GABAARs (g 2-GABAARs) does not depend on the cytoplasmic loop of g 2 subunit, in parallel with previous findings, showing that the synaptic localization of g 2-GABAARs requires the TM4 domain of g2 rather than the large cytoplasmic loop. On the other hand, we showed here that the extrasynaptic targeting of the d-containing GABAARs ( d-GABAARs) depends on the cytoplasmic loop of d subunit via an active or a passive mechanism. We also show that the amino acid sequences of d loop is highly conserved across the whole span of vertebrate evolution suggesting an active role of loop in extrasynaptic targeting of corresponding receptor subtypes.DF

    Derivation of midbrain dopamine neurons from human embryonic stem cells

    No full text
    Human embryonic stem (hES) cells are defined by their extensive self-renewal capacity and their potential to differentiate into any cell type of the human body. The challenge in using hES cells for developmental biology and regenerative medicine has been to direct the wide differentiation potential toward the derivation of a specific cell fate. Within the nervous system, hES cells have been shown to differentiate in vitro into neural progenitor cells, neurons, and astrocytes. However, to our knowledge, the selective derivation of any given neuron subtype has not yet been demonstrated. Here, we describe conditions to direct hES cells into neurons of midbrain dopaminergic identity. Neuroectodermal differentiation was triggered on stromal feeder cells followed by regional specification by means of the sequential application of defined patterning molecules that direct in vivo midbrain development. Progression toward a midbrain dopamine (DA) neuron fate was monitored by the sequential expression of key transcription factors, including Pax2, Pax5, and engrailed-1 (En1), measurements of DA release, the presence of tetrodotoxin-sensitive action potentials, and the electron-microscopic visualization of tyrosinehydroxylase-positive synaptic terminals. High-yield DA neuron derivation was confirmed from three independent hES and two monkey embryonic stem cell lines. The availability of unlimited numbers of midbrain DA neurons is a first step toward exploring the potential of hES cells in preclinical models of Parkinson's disease. This experimental system also provides a powerful tool to probe the molecular mechanisms that control the development and function of human midbrain DA neurons
    corecore