8,614 research outputs found

    Self-Diffusion in Simple Models: Systems with Long-Range Jumps

    Get PDF
    We review some exact results for the motion of a tagged particle in simple models. Then, we study the density dependence of the self diffusion coefficient, DN(ρ)D_N(\rho), in lattice systems with simple symmetric exclusion in which the particles can jump, with equal rates, to a set of NN neighboring sites. We obtain positive upper and lower bounds on FN(ρ)=N((1)˚[DN(ρ)/DN(0)])/(ρ(1ρ))F_N(\rho)=N((1-\r)-[D_N(\rho)/D_N(0)])/(\rho(1-\rho)) for ρ[0,1]\rho\in [0,1]. Computer simulations for the square, triangular and one dimensional lattice suggest that FNF_N becomes effectively independent of NN for N20N\ge 20.Comment: 24 pages, in TeX, 1 figure, e-mail addresses: [email protected], [email protected], [email protected]

    Domain wall description of superconductivity

    Get PDF
    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath.Comment: 9 pages, 5 figures, Latex. Version to appear in PL

    On the rigidity of a hard sphere glass near random close packing

    Full text link
    We study theoretically and numerically the microscopic cause of the mechanical stability of hard sphere glasses near their maximum packing. We show that, after coarse-graining over time, the hard sphere interaction can be described by an effective potential which is exactly logarithmic at the random close packing ϕc\phi_c. This allows to define normal modes, and to apply recent results valid for elastic networks: mechanical stability is a non-local property of the packing geometry, and is characterized by some length scale ll^* which diverges at ϕc\phi_c [1, 2]. We compute the scaling of the bulk and shear moduli near ϕc\phi_c, and speculate on the possible implications of these results for the glass transition.Comment: 7 pages, 4 figures. Figure 4 had a wrong unit in abscissa, which was correcte

    Effective potential in Lorentz-breaking field theory models

    Get PDF
    We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and, then, some examples of Lorentz-violating extensions of scalar QED. We observed, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz-symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we studied depend on the background tensors responsible for the Lorentz symmetry violation. This have consequences in physical quantities like, for example, in the induced mass due to Coleman-Weinberg mechanism.Comment: Version accepted for publication in EPJ

    The Solar Twin Planet Search II. A Jupiter twin around a solar twin

    Full text link
    Through our HARPS radial velocity survey for planets around solar twin stars, we have identified a promising Jupiter twin candidate around the star HIP11915. We characterize this Keplerian signal and investigate its potential origins in stellar activity. Our analysis indicates that HIP11915 hosts a Jupiter-mass planet with a 3800-day orbital period and low eccentricity. Although we cannot definitively rule out an activity cycle interpretation, we find that a planet interpretation is more likely based on a joint analysis of RV and activity index data. The challenges of long-period radial velocity signals addressed in this paper are critical for the ongoing discovery of Jupiter-like exoplanets. If planetary in nature, the signal investigated here represents a very close analog to the solar system in terms of both Sun-like host star and Jupiter-like planet.Comment: 8 pages, 5 figures; A&A accepted; typos corrected in this versio
    corecore