2,310 research outputs found

    Local Molecular Dynamics with Coulombic Interaction

    Full text link
    We propose a local, O(N) molecular dynamics algorithm for the simulation of charged systems. The long ranged Coulomb potential is generated by a propagating electric field that obeys modified Maxwell equations. On coupling the electrodynamic equations to an external thermostat we show that the algorithm produces an effective Coulomb potential between particles. On annealing the electrodynamic degrees of freedom the field configuration converges to a solution of the Poisson equation much like the electronic degrees of freedom approach the ground state in ab-initio molecular dynamics.Comment: 4 pages with 3 figure

    Graphitization in chromium cast iron

    Full text link
    peer reviewedSome trials with graphite Hi-Cr iron rolls have been done mainly in Japan, for the rolling of stainless steel. This material could lead to good compromise between oxidation, wear and thermal behaviour. By using thermal analysis and resistometry, the conditions for secondary graphite formation have been studied. The amount and volume of free graphite may be strongly increased by a suitable heat treatment, allowing a good thermal conductivity as well as high wear and mechanical properties

    Numerical Simulations of Shock Wave-Driven Jets

    Get PDF
    We present the results of numerical simulations of shock wave-driven jets in the solar atmosphere. The dependence of observable quantities like maximum velocity and deceleration on parameters such as the period and amplitude of initial disturbances and the inclination of the magnetic field is investigated. Our simulations show excellent agreement with observations, and shed new light on the correlation between velocity and deceleration and on the regional differences found in observations.Comment: 7 pages, 11 figures, submitted to Ap

    Corrosion studies of different ferrous alloys for rolling cylinders

    Full text link
    peer reviewedThe aim of this work is to study the corrosion behaviour in chloride media of a high chromium iron alloy. The influence of the surface finishing as well as the heat treatment was analysed. The technique employed for measuring the corrosion behaviour was the Electrochemical Impedance Spectroscopy, an electrochemical technique that allows the observation not only of the corrosion rates but also the changes on the corrosion mechanism of the alloy. The results showed that it is worth performing a double tempering and a having smoother surface finishing only for long exposure periods. A comparison between different oxidising conditions was also performed simulating the life in service of the hot rolling cylinders and revealed an increase in the protective properties as the oxidising time increased due to the chromium present on the alloy (18%). (c) 2005 Elsevier Ltd. All rights reserved

    A Bird’s Eye View of Human Language Evolution

    Get PDF
    Comparative studies of linguistic faculties in animals pose an evolutionary paradox: language involves certain perceptual and motor abilities, but it is not clear that this serves as more than an input–output channel for the externalization of language proper. Strikingly, the capability for auditory–vocal learning is not shared with our closest relatives, the apes, but is present in such remotely related groups as songbirds and marine mammals. There is increasing evidence for behavioral, neural, and genetic similarities between speech acquisition and birdsong learning. At the same time, researchers have applied formal linguistic analysis to the vocalizations of both primates and songbirds. What have all these studies taught us about the evolution of language? Is the comparative study of an apparently species-specific trait like language feasible? We argue that comparative analysis remains an important method for the evolutionary reconstruction and causal analysis of the mechanisms underlying language. On the one hand, common descent has been important in the evolution of the brain, such that avian and mammalian brains may be largely homologous, particularly in the case of brain regions involved in auditory perception, vocalization, and auditory memory. On the other hand, there has been convergent evolution of the capacity for auditory–vocal learning, and possibly for structuring of external vocalizations, such that apes lack the abilities that are shared between songbirds and humans. However, significant limitations to this comparative analysis remain. While all birdsong may be classified in terms of a particularly simple kind of concatenation system, the regular languages, there is no compelling evidence to date that birdsong matches the characteristic syntactic complexity of human language, arising from the composition of smaller forms like words and phrases into larger ones

    Laser Guide Stars for Extremely Large Telescopes: Efficient Shack-Hartmann Wavefront Sensor Design using Weighted center-of-gravity algorithm

    Full text link
    Over the last few years increasing consideration has been given to the study of Laser Guide Stars (LGS) for the measurement of the disturbance introduced by the atmosphere in optical and near-infrared astronomical observations from the ground. A possible method for the generation of a LGS is the excitation of the Sodium layer in the upper atmosphere at approximately 90 km of altitude. Since the Sodium layer is approximately 10 km thick, the artificial reference source looks elongated, especially when observed from the edge of a large aperture. The spot elongation strongly limits the performance of the most common wavefront sensors. The centroiding accuracy in a Shack-Hartmann wavefront sensor, for instance, decreases proportionally to the elongation (in a photon noise dominated regime). To compensate for this effect a straightforward solution is to increase the laser power, i.e. to increase the number of detected photons per subaperture. The scope of the work presented in this paper is twofold: an analysis of the performance of the Weighted Center of Gravity algorithm for centroiding with elongated spots and the determination of the required number of photons to achieve a certain average wavefront error over the telescope aperture.Comment: 10 pages, 14 figure

    Local Simulation Algorithms for Coulomb Interaction

    Full text link
    Long ranged electrostatic interactions are time consuming to calculate in molecular dynamics and Monte-Carlo simulations. We introduce an algorithmic framework for simulating charged particles which modifies the dynamics so as to allow equilibration using a local Hamiltonian. The method introduces an auxiliary field with constrained dynamics so that the equilibrium distribution is determined by the Coulomb interaction. We demonstrate the efficiency of the method by simulating a simple, charged lattice gas.Comment: Last figure changed to improve demonstration of numerical efficienc

    Effect of alumina and titanium nitrides inclusions on mechanical properties in high alloyed steels

    Full text link
    peer reviewedevery commercial steel product in varying amounts. Since inclusions significantly influence properties and behaviour of materials and at the same time give indications on the quality of the steel, it is quite interesting to precise their nature and their origin. In this paper concerning a project involved in the COST 517 framework, studied alloys are high alloy steels. The raw materials were obtained from the conventionally electrical cast ingot and the Electro Slag Refining processes. The purpose is to compare various inclusions produced by these different processes and their effect on the mechanical properties. The raw material because of the melting processes themselves, leads to a product with a good to a great cleanliness, and tiny inclusions, which are haphazardly distributed. The actual ASTM E45 chart seems to be inappropriate, as the inclusions founded are too small in size. Therefore, we manage to develop a specific procedure for the study of such inclusions. The different types of inclusions encountered are oxides, titanium nitrides, and manganese sulphides. Studying the effect on mechanical properties, oxides often seem to initiate fatigue fracture

    Study of the combined effects of data assimilation and grid nesting in ocean models - application to the Gulf of Lions

    Get PDF
    Modern operational ocean forecasting systems routinely use data assimilation techniques in order to takeobservations into account in the hydrodynamic model. Moreover, as end users require higher and higher resolution predictions, especially in coastal zones, it is now common to run nested models, where the coastal model gets its opensea boundary conditions from a low-resolution global model. This configuration is used in the “Mediterranean Forecasting System: Towards environmental predictions” (MFSTEP) project. A global model covering the whole Mediterranean Sea is run weekly, performing 1 week of hindcast and a 10-day forecast. Regional models, using different codes and covering different areas, then use this forecast to implement boundary conditions. Local models in turn use the regional model forecasts for their own boundary conditions. This nested system has proven to be a viable and efficient system to achieve high-resolution weekly forecasts. However, when observations are available in some coastal zone, it remains unclear whether it is better to assimilate them in the global or local model. We perform twin experiments and assimilate observations in the global or in the local model, or in both of them together. We show that, when interested in the local models forecast and provided the global model fields are approximately correct, the best results are obtained when assimilating observations in the local model

    Understanding the Excess 1/f Noise in MOSFETs at Cryogenic Temperatures

    Get PDF
    Characterization, modeling, and development of cryo-temperature CMOS technologies (cryo-CMOS) have significantly progressed to help overcome the interconnection bottleneck between qubits and the readout interface in quantum computers. Nevertheless, available compact models still fail to predict the deviation of 1/f noise from the expected linear scaling with temperature ( T\textit{T} ), referred to as “excess 1/f noise”, observed at cryogenic temperatures. In addition, 1/f noise represents one of the main limiting factors for the decoherence time of qubits. In this article, we extensively characterize low-frequency noise on commercial 28-nm CMOS and on research-grade Ge-channel MOSFETs at temperatures ranging from 370 K down to 4 K. Our investigations exclude electron heating and bulk dielectric defects as possible causes of the excess 1/f noise at low temperatures. We show further evidence for a strong correlation between the excess 1/f noise and the saturation of the subthreshold swing (SS) observed at low temperatures. The most plausible cause of the excess noise is found in band tail states in the channel acting as additional capture/emission centers at cryogenic temperatures
    corecore