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Abstract. Modern operational ocean forecasting systems
routinely use data assimilation techniques in order to take
observations into account in the hydrodynamic model. More-
over, as end users require higher and higher resolution pre-
dictions, especially in coastal zones, it is now common to
run nested models, where the coastal model gets its open-
sea boundary conditions from a low-resolution global model.
This configuration is used in the “Mediterranean Forecast-
ing System: Towards environmental predictions” (MFSTEP)
project. A global model covering the whole Mediterranean
Sea is run weekly, performing 1 week of hindcast and a 10-
day forecast. Regional models, using different codes and
covering different areas, then use this forecast to implement
boundary conditions. Local models in turn use the regional
model forecasts for their own boundary conditions. This
nested system has proven to be a viable and efficient system
to achieve high-resolution weekly forecasts. However, when
observations are available in some coastal zone, it remains
unclear whether it is better to assimilate them in the global
or local model. We perform twin experiments and assimilate
observations in the global or in the local model, or in both
of them together. We show that, when interested in the lo-
cal models forecast and provided the global model fields are
approximately correct, the best results are obtained when as-
similating observations in the local model.

1 Introduction

For various reasons, such as insufficiently known initial con-
ditions, model parameters and atmospheric forcings, numeri-
cal ocean models progressively drift away from the true state
of the ocean state. With the availability of numerous, often
real-time or almost real-time observations, data assimilation
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techniques have proven to be an essential component of op-
erational forecasting systems, as they allow to find a compro-
mise (in some optimal way) between model forecasts and ob-
servations. Moreover, end users often ask for high resolution
forecasts in coastal zones. A common technique to achieve
this is to use nested grids, achieving high resolution results
only in a limited region and thus avoiding the computational
cost of high resolution in the rest of the basin. After choos-
ing a specific data assimilation scheme, and a specific imple-
mentation of the nesting procedure, the combination of both
those techniques can be realized in different ways. In par-
ticular, the available observations could be assimilated in the
coarse, global model, or in the high resolution, local model.
When assimilated in the global model, the information they
bring would be transferred to the local model through ini-
tial and boundary conditions; when they are assimilated in
the local model, they immediately have an impact on this
models output; but the coarse resolution model, which is not
corrected, might then feed the local model with inappropri-
ate boundary conditions. The current study presents series of
twin experiments in order to address those questions, under
the hypothesis that we are interested mainly in the output of
the high resolution model.

In the following section, we will describe our study area,
the GHER hydrodynamic model, the grid nesting procedure,
and the data assimilation scheme. We will also briefly show
the results of the (unforced) nested model and compare with
observations from the literature. The twin experiments are
described in Sect.3. In Sect.4, we expose the different pos-
sible combinations of grid nesting and observations assimi-
lation, and compare their performances. Some conclusions
are given in Sect.5.

Published by Copernicus GmbH on behalf of the European Geosciences Union.



214 L. Vandenbulcke et al.: Data assimilation in nested grids

2 Model set-up

2.1 Study area

Our study area is the Gulf of Lions (GoL) (bathymetry shown
in Fig. 1a), a large continental margin in the Northwestern
Mediterranean Sea, where many small scale processes such
as gyres and meanders along the canyon take place. The
first internal Rossby radius is 7 to 11 km (Grilli and Pinardi,
1998), with local minima as small as a few km. The GoL
is influenced by different intense forcings. Two strong, cold
and dry continental winds, the northern Mistral and north-
western Tramontane, are known to be key factors for the con-
dition of the sea, leading to sea-surface cooling and the so-
called Dense-Water Formation (see e.g.Lacombe and Tch-
ernia, 1974; Millot , 1990, or more recentlyEstournel et al.,
2003). Several rivers end in the GoL; the Rhône river is the
most important one, and accounts for 80 to over 90% of the
total discharge. The southern and eastern limits of the do-
main are open sea boundaries, with a major current flowing
through: the Liguro-Provenal-Catalan (LPC) current, also
called Northern Current. This current forms north of Cor-
sica where the Eastern Corsican Current and Western Cor-
sican Current join, and moves westward along the French
coast. The LPC is formed of Modified Atlantic Water (down
to 300–400 m), and Levantine Intermediate Water (from 500
to 800 m). It can be seen as the northern branch of the gen-
eral cyclonic gyre of the north-western Mediterranean Sea.
In order to conserve potential vorticity, the large-scale flow
is constrained along the GoL shelf break, but instabilities can
make it penetrate over the coastal region, partly controlling
the shelf circulation. The LPC is largely responsible for the
exchanges between the open sea and the shelf. This has been
studied in the literature, e.g.Millot (1990); Estournel et al.
(2003); Petrenko(2003) and review paperMillot (1999). In
the winter, the LPC has been shown to be baroclinically un-
stable, with rapid variations in its position: the periods are of
a few days to 20 days (Crépon et al., 1982). All these pro-
cesses imply that a correct modeling of the GoL requires to
take into account all scales, from small to large, in a full 3-D
model.

2.2 Hydrodynamic model

Our study uses the GHER hydrodynamic model. It is a hy-
drostatic free-surface primitive equation model solving the
prognostic variables of temperature, salinity, see surface ele-
vation, horizontal velocity and turbulent kinetic energy, using
theβ-plane and Boussinesq approximations. Horizontally, it
uses an Arakawa-C grid. In the vertical, it uses a double
sigma coordinate, the limit between the two zones being at
170 m depth. Its integration scheme is conservative for trac-
ers. Furthermore, the model uses mode splitting: for compu-
tational efficiency, the barotropic timestep is much smaller
than the baroclinic one. The vertical turbulence uses a k

turbulent kinetic energy closure scheme described inNihoul
et al. (1989). Further information about the GHER model
can be found inBeckers(1991).

2.3 Passive and interactive nesting

As explained before, the Gulf of Lions is the siege of rela-
tively small-scale processes that cannot be resolved by coarse
resolution grids, but yet are (also) dependent on the large
scales. For the simulations described below, a resolution of
1/100◦ (approximately 1 km) was desired. To resolve the
open boundary problem, a system of nested grids was im-
plemented. In order to avoid a high factor between the res-
olutions of the coarse and fine grids, an intermediate grid
was also implemented, yielding two successive refinement
factors of 5. The coarse resolution model covers the whole
Mediterranean Sea with a resolution of 1/4◦. The intermedi-
ate grid covers the area of the North-Western Mediterranean
Sea, its eastern boundary being the Corsica and Sardinia is-
lands, with a resolution of 1/20◦. Finally, the third grid cov-
ers the area of the GoL with a resolution of 1/100◦. The three
grids are shown in Fig.1.

The nesting procedure involves data exchanges between
successive grids. In the so-called one-way nesting, the coarse
grid model is interpolated on the fine grid to provide bound-
ary conditions. The coarse grid does not use any informa-
tion from the fine grid, thus, it can be run standalone first,
the fine grid model being run afterward. This is useful for
operational systems where the nested systems use different
models, or are not run at the same place. This kind of imple-
mentation can be found in e.g.Pinardi et al.(2003), Korres
and Lascaratos(2003), Echevin et al.(2003) or Zavatarelli
and Pinardi(2003) for the Mediterranean Forecasting Sys-
tem pilot project (MFSPP). However, one-way nesting leads
to the following disadvantage. If the simulation is run for
a long period, discrepancies can appear between solutions
of the grids, making the application of boundary conditions
delicate, and possibly leading to instabilities in the fine grid
model. If the fine grid model is reinitialized regularly (e.g.
the Eastern Mediterranean basin subgrid is initialized every
week in the MFS system (N. Skliris, private communica-
tion)), its small-scale features are lost. So-called variational
initialization methods try to overcome this difficulty and are
now used operationally, see e.g.Auclair et al.(2000, 2001).
Another possibility is to reinitialize the fine model a few days
before the actual forecast, so as to let the small-scale features
develop (e.g. the North-Western basin subgrid in the MFS
system performs an 8-day hindcast each week (C. Estournel
and M. Lux, private communication)).

If both the coarse and fine models are run together, the fine
model results can be averaged over each coarse grid cell in
the overlapping area, where they replace the coarse model
outputs. This yields the two-way or interactive nesting. Al-
though the dynamic is different in the nested grids, inconsis-
tencies are very less likely to appear between them. It has
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Fig. 1. Bathymetry of the 3 successive grids, in meters(a) Gulf of Lions (GoL), (b) North-Western Mediterranea (intermediate grid),
(c) Mediterranean Sea (coarse grid). The correspond model grid resolution are respectively 0.01◦, 0.05◦ and 0.25◦ (for both horizontal
directions). Red boxes in a grid indicate the position of the GoL grid.

been shown that two-way nesting yields more realistic repre-
sentations of the mesoscale features inside the fine grid do-
main, and also has positive effects outside the domain (Barth
et al., 2005).

Let’s note that incoherences can also appear due to the fact
that lateral open-sea boundary condition for the high resolu-
tion model are obtained by interpolation of the coarse reso-
lution model outputs, as shown inAuclair et al.(2001). This
problem was not further examined here.

In the present implementation, no refinement is used in
the vertical. At the boundary of successive domains, the
bathymetry is kept constant over the fine grid cells, corre-
sponding to one coarse cell (as can be seen in Fig.1). Over
this boundary band, the land-sea mask is also identical for
both grids. The original bathymetry is also smoothed more
in the coarse grid than in the GoL grid. All the details about
the nesting procedure can be found inBarth et al.(2005).

2.4 Model implementation and results

Further details of the implementation used for our study are
given below.

The bathymetry is theSmith and Sandwell(1997)
bathymetry. A model covering the whole Mediterranean Sea
is started from MODB climatological initial conditions, and
spun up for 10 years. Interpolation and averaging then yield
the initial conditions of the 3 model grids described above.
The same timestep is used in all 3 grids: 3 s (barotropic
mode) and 3 min (baroclinic mode). We use a relaxation
term towards the MODB/MEDAR4 climatology. Starting
on 1 January 1998, the 3 models are spun up one month
using two-way nesting. We use climatological Rhône river
discharges (Tusseau and Mouchel, 1994). Interactive sur-
face fluxes are computed using bulk formula; atmospherical
data are the 6-hourly European Centre for Medium-Range
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Fig. 2. (a) Average ECMWF-reanalysis wind direction over the
Gulf of Lions (b) wind velocity (c) data assimilation cycles on the
same time-scale. The blue circles represent the false and correct
initial condition used to start the twin experiment on 30 January,
while red stars represent assimilation cycles.

Weather Forecasts (ECMWF) reanalysis fields with a spatial
resolution of a half degree. The wind speed and direction,
averaged over the GoL grid, is shown in Figs.2a and b. It
can be seen that 3 Mistral/Tramontane wind events take place
around 14, 16–17 and 20 January. Other, similar or smaller
events take place in February. It should be noted however
that these average wind values do not correspond to a wind
field homogeneous over the GoL. Finally, on 30 January, the
twin experiment runs begin.

Although the purpose of this study is not to examine the
hydrodynamics of the GoL itself, but rather to examine data
assimilation in nested grids, we still present a brief sum-
mary. The results in the intermediate-resolution grid (Fig.3a)
clearly show the cyclonic gyre of the Western Mediterranean
Sea. Its northern part, the LPC shows a width of 30 to 40 km,
in good agreement with the literature. Its current veloci-
ties are about 30 cm s−1 and the associated transport is about
1.3 Sv, which is slightly less than the maximum values usu-
ally found for the winter in the literature, of 1.5 to 2 Sv (see
e.g.Millot , 1999). The LPC is of course also visible in the
lower part of the high-resolution grid (Fig.3b), as well as the
strong meanders detaching from it at various places. Figure4
shows the salinity along the A′–A line in Fig.3b, just next the
Rhône river mouth. The salinity in the GoL is strongly influ-
enced by the river plume, with values as low as 35.5 psu just
at the river mouth. Along the shelf break, a vein of Levan-
tine Intermediate Water (LIW) shows good agreement with
the literature (e.g.Sparnocchia et al., 1995; Millot , 1999). It
has a high salinity (38.45 psu in our simulation, compared to

38.6 psu in the literature), and its depth ranges from 300 to
700 m, when it can go from 200 up to 1000 m in the litera-
ture. Below the LIW, the Western Mediterranean Deep Water
(WMDW) has a lower salinity (38.3 psu compared to 38.4 in
the literature). The temperature field shows the same water
masses, also in good agreement with the literature. Finally,
let’s note that further away from the Rhône river mouth, the
GoL waters are well mixed (not shown).

2.5 Assimilation scheme

We will use a Reduced-Rank Square Root (RRSQRT) assim-
ilation scheme, described inVerlaan and Heemink(1997).
It can be shown that the analysis of this filter is mathemati-
cally equivalent to the Singular Evolutive Extended Kalman
(SEEK) filter, described e.g. inPham et al.(1998); Brasseur
et al.(1999). Only the first- and second-order moments of the
error statistics are retained. Using the RRSQRT filter implies
that we suppose that the processes can be considered quasi-
linear, and the model error is approximately gaussian. This
is obviously not the case, as shown inAuclair et al.(2003).
However, for relatively short time forecasts, we still will use
this widespread approach.

If the model state vector dimension isn, instead for the
model error covariance matrixP to have a rankn×n, we can
suppose it has only a rankn×r, with r�n; hence it can be
written asP=SST , whereS is a n×r matrix. As a widely
used approximation introduced inPham et al.(1998), we will
take the model variability in time as an estimation for its er-
ror. Then, the columns ofS can be written as the firstr prin-
cipal components, also called empirical orthogonal functions
(EOFs); here, we taker=20 as it is reasonable trade-off, al-
lowing to represent the errors fairly well while keeping com-
putational cost low enough. As explained in Sect.2.1, the
processes involved in the GoL cannot be described otherwise
than fully 3-D. Therefore, 3-D EOFs are calculated from the
daily model states, from 2 model runs, one covering January
and February 1997 and one covering January 1998. They are
computed at the same time over 3 variables (T, S andη) and
over the 3 grids, after the temporal mean has been removed
from all the fields. In the state vector and EOFs, each point
uses a norm equal to the product of the corresponding grid
cell volume and the variables variance. Some parts of the
first EOF are shown in Fig.5.

It has been shown recently (Auclair et al., 2003) that a bet-
ter data assimilation scheme, or at least a better errorspace,
would be obtained by EOFs built from ensemble runs ob-
tained by perturbing variables of the simulation, such as the
atmospheric forcings, the forcing field along the open bound-
ary, the initial state (and in particular the position and inten-
sity of the LPC), model parameters and the bathymetry.

It should also be noted that the limited amount of “direc-
tions” that we use to build the errorspace, will probably not
be able to correct all the errors encountered. In particular,
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Fig. 3. Example of model results: plots from 17 January 1998.(a) Surface current velocity [m s−1] in the intermediate grid. The cyclonic
gyre and LPC current are clearly visible.(b) The arrows represent surface currents [m s−1], the color represent surface elevation [m] and the
contour lines represent isobaths [m]. The LPC follows the shelf break. Following Tramontane/Mistral wind bursts on 14 and 16 January, an
intense current moves surface waters (and the Rhône plume in particular) away from the coastline.

the high variability in the Rĥone river plume will probably
not be resolved by our errorspace basis.

A final approximation will be not to updateP during the
simulation. Because of the procedure followed to obtain it,P
is representative for the period covering January and Febru-
ary. However, in the complete RRSQRT or SEEK filters, the
error covariance is updated by the model (generally increas-
ing it) and by the assimilation scheme (decreasing it). Thus,
the ratio of the eigenvalues of the projection ofP in the ob-
servation space, and the eigenvalues ofR (the observations
error covariance matrix), is modified during the simulation;
this is not the case in our experiment as bothP andR are
constant in time.

Our model state vector contains temperature (T) and salin-
ity (S) at each 3-D gridpoint, as well as sea surface eleva-
tion (η). Thus, whenever data is assimilated, this leads to
corrections on the T, S, andη variables. These corrections
are multiplied by a radial gaussian function centered on the
corresponding observation in order to limit the spatial extent
of the correction that an observation can yield. In the present
case, the gaussians extentσ is put to 100 km. Let’s notice that
if P would accurately represent the model error covariance,
this step would not be necessary; unphysical long-range cor-
relations would not be present in the computed statistics. Fi-
nally, the geostrophic velocity correction (corresponding to
the T, S andη corrections) is computed and applied to the
model horizontal velocity variablesU andV .

Fig. 4. Salinity along the A′–A line in Fig. 3b. The salinity in the
GoL is influenced by the Rĥone. A LIW vein is clearly visible along
the shelf break.

3 Twin experiment

In the present section, a twin experiment is set up. The model
run shown in the previous section is used as the reference run.
Another run will start from different initial conditions, being
the ocean state from January, 23 instead of 30 January 1998
(see Fig.2c). This choice ensures that the initial conditions
are physically balanced. The grids are also coherent with
each other, since the reference run uses interactive nesting.
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Fig. 5. Surface plot of the temperature in◦C (a, b), surface salinity in psu(c, d) and elevation in m(e, f) parts, in the GoL (a, c, e) and in
the Intermediate grid (b, d, f), of the first multigrid multivariate 3-D EOF, calculated after removing the temporal mean. The 1st EOF shows
relatively large-scale structures, when EOFs of higher order represent structures with a smaller scale (not shown).

Some atmospheric forcings (wind velocity, air temperature
and cloud coverage) are also modified in the following way.
The real fields are decomposed as weighted sums of EOFs,
which are obtained from a year time-series. It appears that
30 EOFs are needed to accurately describe the cloud cover-
age field (95% of variance), 10 to 20 for air temperature and
about 80 for wind velocity (see Fig.6). For all 4 fields how-
ever, we used 100 principal components, the computational
cost being low. The modified fields are then obtained by
multiplying the real weights by a random factor included in
[1−ε, 1+ε]. This random factor is kept constant at all times
in order to avoid large, unphysical variations in the forcing
fields. Adequate fields were obtained by usingε equal to
0.4, 0.5 and 0.35, respectively for the wind velocity, cloud
coverage and air temperature fields.

Every 2 days starting on January 31st, pseudo-
observations are assimilated in a perturbed run in order to
bring it as close as possible to “reality” (assimilation cycles
are represented by red stars in Fig.2c). As pseudo-data, we
assimilate Sea Surface Temperature (SST) over the whole
GoL, and Sea Surface Height (SSH) over a pseudo-track in
the Gulf of Lions. As an example, the observations to use
during the first assimilation cycle (on 31 January) are shown
in Fig. 7. The error covariance corresponding to these ob-
servations is represented by a diagonal matrixR, with values
equal to the square of 1◦C (for temperature) and 0.4 m (for
surface elevation).
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Fig. 6. Error between the actual wind field, and its recomposition
using the N first EOFs, as a function of N(a) rms error of the veloc-
ity [m/s] (b) mean direction error [◦] (means are calculated spatially
over the whole Mediterranean grid).

4 Comparison of different setups

If observations are available in the area covered by the fine
grid (the GoL), they could be assimilated in the coarse (and
intermediate) grid, or in the fine grid, or both. Our purpose
is to examine which setup is the most efficient in the con-
text of an operational system where only one-way nesting is
currently used. Therefore, we define the following 4 study
cases:

– case 1: the nesting is two-way, and data is assimilated in
the fine grid. The corrections are automatically fed back
to the other grids via the two-way nesting. As men-
tioned before, two-way has many advantages in- and
outside the coastal domain; but it is not feasible in most
operational configurations such as the one used in the
MFSTEP project.

– case 2 will use one-way nesting, observations are still
assimilated in the fine grid only.

– case 3 also uses one-way nesting, but data is assimilated
in all the grids at the same time.

– in case 4, one-way nesting still is used; data is assim-
ilated in the coarse grid only. Let’s note that since
the observations assimilated in the coarse grid are still
physically located in the Gulf of Lions, information
should be transported to the intermediate-resolution
model through the boundary conditions, and hereafter
transported to the high-resolution model.

Fig. 7. Pseudo-observations coming from the reference run:(a)
Sea Surface Temperature [◦C], (b) Sea Elevation corresponding to
a typical satellite track [m]

– Moreover, we will define a fifth case, based on the work
of Barth et al.(2006). In this case, all 3 state vec-
tors from the 3 grids are assembled in a unique state
vector. Since the EOFs have been calculated over the
3 grids together too, perfect correlation is assured be-
tween data, located at the same physical points in dif-
ferent grids. Hence, an observation automatically yields
coherent corrections in the 3 grids. If an evolutive as-
similation scheme were to be used (i.e. the model would
be used to updateP in time), the model error covariance
update equations would also yield “errorspace” feed-
back.

Let’s note that in cases 2, 3 and 4, one-way nesting is used,
so that discrepancies could appear between grids, ultimately
leading to instabilities in the coastal model. Other instabil-
ities may appear, as mentioned before, in the Rhône river
plume after each assimilation cycle. Therefore, the follow-
ing defensive procedure was implemented. Before and after
assimilation, the Brunt-Vasala frequencyN2 is calculated for
each gridpoint. The spatial mean of its square values is also
computed, separately for positive (stable) and negative (un-
stable) values ofN2. For a point whereN2 is positive, ifN2

after the assimilation is smaller than 3 times the mean square
value of all positive values in the grid, the assimilation cor-
rection is completely applied; ifN2 is larger than 10 times
the mean square value, the correction is not applied. For val-
ues ofN2 between 3 and 10 times the mean square value, the
correction decreases linearly. The same procedure is applied
for points with a negativeN2 frequency. In our study, this
yields masks where the corrections in the Rhône plume are
almost systematically put to zero, confirming our suspicion
that the errorbase would not be able to describe the plume
variability (Fig.8).

As an example, the correction to the surface temperature in
the GoL, after the first assimilation cycle in case 5, is shown
in Fig. 9. The corresponding assimilated data are shown in
Fig. 7.

Figure10 shows plots of the rms error between the refer-
ence run, and the runs corresponding to cases 1 to 5 as well as

www.ocean-sci.net/2/213/2006/ Ocean Sci., 2, 213–222, 2006



220 L. Vandenbulcke et al.: Data assimilation in nested grids

Fig. 8. An example of a mask used to multiply the correction, and
computed from the N2 field after assimilation. The shown mask is
calculated for the first assimilation cycle.

a free run (without data assimilation). The averages are cal-
culated over the grid points where observations are available.
All the runs start from the same rms error, which is the rms
between the “right” and alternative initial conditions. It can
be seen that case 1 (the simulation with interactive nesting)
presents rms errors very close to case 5 (the simulation with
feedback, but where corrections are automatically copied to
the 3 grids, since all 3 grids are comprised in the state vector).
However in our experiment, we kept the model error covari-
ance matrixPconstant. If it would be modified by the assimi-
lation procedure, those modifications would still be coherent,
in case 5, for covariances between identical physical points
located in different grids (in opposition to what would hap-
pen in the other 4 cases). Hence, the assimilation of obser-
vations in subsequent assimilation cycles would probably be
more accurate. Cases 1 and 5 both show much smaller errors
than the 3 cases using one-way nesting. This indicates that
the errors, which were not corrected in the global and inter-
mediate model, are advected back to the local model through
the boundary conditions. It can also be seen that the differ-
ences between cases 2 and 3 (assimilate in the GoL only, or
in all 3 grids), are very small; indicating that the corrections
made in the (intermediate and) global model are not sufficient
to improve the boundary conditions significantly. In any way,
their effect on the rms errors is much smaller than the assimi-
lation of data in the local grid. Small corrections in the coarse
grid are due to the fact that these fields are already close to
the observations, with respect to the error covariances. Un-
less the correction in the coarse grids becomes much more
important (i.e. the fields in the coarse grid part further away
from “reality”), it is thus not very useful to assimilate obser-
vations in the coarse grid. Finally, case 4 shows the largest
rms errors of all. Corrections are only brought to the coarse

Fig. 9. Correction yielded by the first assimilation cycle on the Sea
Surface Temperature [◦C]

grid; they need to propagate via the intermediate model, to
the local model. There is no immediate change in the rms
errors of the local model at assimilation times. Since the rms
error of in case 4 is ultimately smaller than the one in the
free run, it seems the information (assimilated in the global
model) slowly arrive in the local model anyway.

It can also be noted that the error on surface elevation is
small (a few centimeters) at all times, even in the “free” run.
During assimilation cycles, it is reduced by a factor close to
2, but in between each assimilation cycle, the model causes
new errors of the same order as the correction, leading to
an oscillating rms error curve. However, the maximum error
remains of the order of 3 cm.

It is interesting to examine the rms errors between the ref-
erence run and the other cases, with the averages calculated
over other location than those where observations are avail-
able (of course, this is only possible in the framework of a
twin experiment). In particular, we show the rms curve cal-
culated over the whole 3-D grid in Fig.11. As example, we
used case 5. As can be seen, the data assimilation cycles re-
duce the overal rms error, even in points where no data was
assimilated. In fact, the procedure also reduces rms errors
on the salinity variable, although no salinity observations are
available. This shows that the errorspace correcly represents
the statistical covariance between different model variables.
Only during the fifth assimilation cycle (on 8 February 1998,
at midnight), the correction on SST and surface elevation
along a satellite track, statistically yields a salinity correc-
tion which actually increases the salinity rms error. It can be
seen that the surface elevation mismatch is, for that assimila-
tion cycle, very important (almost 3 times larger than during
the first assimilation cycle).
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Fig. 10.Evolution of the rms error in time, between the reference run and the perturbed runs, the latter being the free run (blue curve), case 1
(red curve), case 2 (turquoise curve), case 3 (purple curve), case 4 (yellow curve), and case 5 (green curve), showing(a) SST(b) Surface
elevation. The stars represent assimilation cycles.

5 Conclusions

We have studied the impact of data assimilation in a nested
hydrodynamic model, assessing the question whether the
available observations should be assimilated in the high-
resolution, local grid, or in the coarse-resolution grid. Us-
ing twin-experiments with different test-cases, we obtained
some general conclusions, e.g. that

– two-way nesting moves the model towards “reality”
faster than one-way nesting. Indeed, when new infor-
mation is added in any grid, it is transmitted to all the
other grids; in the one-way nesting paradigm, informa-
tion only goes from low-resolution to high-resolution
grids.

– the RRSQRT filter that we used, yields satisfactory re-
sults, even though we chose a low errorspace dimension
(20). Only in places with very high variability (such as
a river plume or some points along the coastlines), the
filter could not capture the model variability and hence,
we artificially diminished the correction in those points,
because they were expected to be incorrect.

– using multi-variable state-vectors, we have corrected all
variables by observing only some of them. Using a full
3-D matrix, we have also corrected variables over the
whole grid, although only surface variables were avail-
able.

Supposing that the global model is approximately correct
(i.e. it feeds the local model with boundary conditions “not
too far” from reality), we showed that the high-resolution

Fig. 11. Evolution of the rms error in time, between the reference
run and case 5, of the rms error calculated over the entire 3-D field
of temperature (blue curve), the entire 3-D field of salinity (green
curve), the whole surface elevation field (red curve). The stars rep-
resent assimilation cycles.

model is better corrected when available observations are as-
similated immediately in that grid, rather than to assimilate
them in the coarse-resolution grid and transport the informa-
tion in the local model via boundary conditions. And if the
data is assimilated in the high-resolution model, it is then of
little use to also have assimilated it in the global model (this
is even less useful when using interactive nesting).

www.ocean-sci.net/2/213/2006/ Ocean Sci., 2, 213–222, 2006
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