1,979 research outputs found

    Hydrodynamic modeling of deconfinement phase transition in nuclear collisions

    Full text link
    The (3+1)-dimensional ideal hydrodynamics is used to simulate collisions of gold nuclei with bombarding energies from 1 to 160 GeV per nucleon. The initial state is represented by two cold Lorentz-boosted nuclei. Two equations of state: with and without the deconfinement phase transition are used. We have investigated dynamical trajectories of compressed baryon-rich matter as functions of various thermodynamical variables. The parameters of collective flow and hadronic spectra are calculated. It is shown that presence of the deconfinement phase transition leads to increase of the elliptic flow and to flattening of proton rapidity distributions.Comment: 11 pages, 6 figure

    A Cone Jet-Finding Algorithm for Heavy-Ion Collisions at LHC Energies

    Get PDF
    Standard jet finding techniques used in elementary particle collisions have not been successful in the high track density of heavy-ion collisions. This paper describes a modified cone-type jet finding algorithm developed for the complex environment of heavy-ion collisions. The primary modification to the algorithm is the evaluation and subtraction of the large background energy, arising from uncorrelated soft hadrons, in each collision. A detailed analysis of the background energy and its event-by-event fluctuations has been performed on simulated data, and a method developed to estimate the background energy inside the jet cone from the measured energy outside the cone on an event-by-event basis. The algorithm has been tested using Monte-Carlo simulations of Pb+Pb collisions at s=5.5\sqrt{s}=5.5 TeV for the ALICE detector at the LHC. The algorithm can reconstruct jets with a transverse energy of 50 GeV and above with an energy resolution of ∼30\sim30%.Comment: 13 pages, 7 figure

    Longitudinal Flow of Protons from 2-8 AGeV Central Au+Au Collisions

    Full text link
    Rapidity distributions of protons from central 197^{197}Au + 197^{197}Au collisions measured by the E895 Collaboration in the energy range from 2 to 8 AGeV at the Brookhaven AGS are presented. Longitudinal flow parameters derived using a thermal model including collective longitudinal expansion are extracted from these distributions. The results show an approximately linear increase in the longitudinal flow velocity, L_{L}, as a function of the logarithm of beam energy.Comment: 5 Pages, including 3 figures, 1 tabl
    • …
    corecore