1,284 research outputs found
Non-vanishing Berry Phase in Chiral Insulators
The binary compounds FeSi, RuSi, and OsSi are chiral insulators crystallizing
in the space group P2_13 which is cubic. By means of ab initio calculations we
find for these compounds a non-vanishing electronic Berry phase, the sign of
which depends on the handedness of the crystal. There is thus the possibility
that the Berry phase signals the existence of a macroscopic electric
polarization due to the electrons. We show that this is indeed so if a small
external magnetic field is applied in the [111]-direction. The electric
polarization is oscillatory in the magnetic field and possesses a signature
that distinguishes the handedness of the crystal. Our findings add to the
discussion of topological classifications of insulators and are significant for
spintronics applications, and in particular, for a deeper understanding of
skyrmions in insulators
Microscopic origin of Magnetic Ferroelectrics in Nonlinear Multiferroics
A simple but general microscopic mechanism to understand the interplay
between the electric and magnetic degrees of freedom is developed. Within this
mechanism, the magnetic structure generates an electric current which induce an
counterbalance electric current from the spin orbital coupling. When the
magnetic structure is described by a single order parameter, the electric
polarization is determined by the single spin orbital coupling parameter, and
the material is predicted to be a half insulator. This mechanism provides a
simple estimation of the value of ferroelectricity and sets a physical
limitation as well.Comment: 4 pages, 1 figur
d0 Perovskite-Semiconductor Electronic Structure
We address the low-energy effective Hamiltonian of electron doped d0
perovskite semiconductors in cubic and tetragonal phases using the k*p method.
The Hamiltonian depends on the spin-orbit interaction strength, on the
temperature-dependent tetragonal distortion, and on a set of effective-mass
parameters whose number is determined by the symmetry of the crystal. We
explain how these parameters can be extracted from angle resolved
photo-emission, Raman spectroscopy, and magneto-transport measurements and
estimate their values in SrTiO3
Magnetization Dissipation in Ferromagnets from Scattering Theory
The magnetization dynamics of ferromagnets are often formulated in terms of
the Landau-Lifshitz-Gilbert (LLG) equation. The reactive part of this equation
describes the response of the magnetization in terms of effective fields,
whereas the dissipative part is parameterized by the Gilbert damping tensor. We
formulate a scattering theory for the magnetization dynamics and map this
description on the linearized LLG equation by attaching electric contacts to
the ferromagnet. The reactive part can then be expressed in terms of the static
scattering matrix. The dissipative contribution to the low-frequency
magnetization dynamics can be described as an adiabatic energy pumping process
to the electronic subsystem by the time-dependent magnetization. The Gilbert
damping tensor depends on the time derivative of the scattering matrix as a
function of the magnetization direction. By the fluctuation-dissipation
theorem, the fluctuations of the effective fields can also be formulated in
terms of the quasistatic scattering matrix. The theory is formulated for
general magnetization textures and worked out for monodomain precessions and
domain wall motions. We prove that the Gilbert damping from scattering theory
is identical to the result obtained by the Kubo formalism.Comment: 15 pages, 1 figur
Calculations of giant magnetoresistance in Fe/Cr trilayers using layer potentials determined from {\it ab-initio} methods
The ab initio full-potential linearized augmented plane-wave method
explicitly designed for the slab geometry was employed to elucidate the
physical origin of the layer potentials for the trilayers nFe/3Cr/nFe(001),
where n is the number of Fe monolayers. The thickness of the transition-metal
ferromagnet has been ranged from up to n=8 while the spacer thickness was
fixed to 3 monolayers. The calculated potentials were inserted in the
Fuchs-Sondheimer formalism in order to calculate the giant magnetoresistance
(GMR) ratio. The predicted GMR ratio was compared with the experiment and the
oscillatory behavior of the GMR as a function of the ferromagnetic layer
thickness was discussed in the context of the layer potentials. The reported
results confirm that the interface monolayers play a dominant role in the
intrinsic GMR.Comment: 17 pages, 7 figures, 3 tables. accepted in J. Phys.: Cond. Matte
Physiological Responses to Environmental Variation in Intertidal Red Algae: Does Thallus Morphology Matter?
Morphological variation within and among many species of algae show correlated life history traits. The trade-offs of Life history traits among different morphs are presumed to be determined by morphology. Form-function hypotheses also predict that algae of different morphological groups exhibit different tolerances to physiological stress, whereas algae within a morphological group respond similarly to stress. We tested this hypothesis by comparing photosynthetic and respiratory responses to variation in season, light, temperature, desiccation and freezing among the morphologically similar fronds of Chondrus crispus and Mastocarpus stellatus and the alternate stage crust of M. stellatus. Physiological differences between fronds of the 2 species and crusts and fronds were consistent with their patterns of distribution and abundance in the intertidal zone. However, there was no clear relationship between algal morphology and physiological response to environmental variation. These results suggest that among macroalgae the correlation between Life history traits and morphology is not always causal. Rather, the link between life history traits and morphology is constrained by the extent to which physiological characteristics codetermine these features
Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges
In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices
Experimental Induction of Odontoblast Differentiation and Stimulation During Preparative Processes
In vivo implantation experiments have shown that ethylenediaminetetraaceticacid(EDTA)-soluble frac tions of dentin stimulate reparative dentinogenesis . When isolated embryonic dental papillae were cultured in the presence of these dentin constituents, odontoblast cytological and functional differentiation could be initiated and maintained in the absence of an enamel organ. These effects were attributed to the presence of TGF-/1- related molecules [TGF-/11 or bone morphogenetic protein -2a (BMP-2a)] which had to be used in combination with an EDT A-soluble fraction of dentin in order to specifically affect competent preodontoblasts . These EDT A-soluble constituents present in dentin could be replaced by heparin or fibronectin which both have been reported to interact with TGF-/1. The association of such defined matrix components with a TGF-/1-related molecule represents a biologically active complex triggering odontoblast functional differentiation.
In response to caries, odontoblasts modulate their secretory activity and are stimulated to elaborate reactionary dentin. This might be induced by active molecules such as IGF, TGF-6 or BMP which are liberated from dentin consecutively to the demineralization process.
Reparative dentinogenesis is distinct from reactionary dentinogenesis and more complex since it implicates the differentiation of precursor cells present in the dental papilla. The developmental history of these cells is different from that of the physiological predontoblasts in developing teeth. The nature of these stem cells and the mechanism of their induction still remain open questions
In-situ surface technique analyses and ex-situ characterization of Si1-xGex epilayers grown on Si(001)-2 ×1 by molecular beam epitaxy
Si1-xGex epilayers grown by Molecular Beam Epitaxy on Si(001) at 400 ○C have been analyzed in-situ by surface techniques such as X-ray and Ultraviolet Photoelectron Spectroscopies (XPS and UPS), Low Energy Electron Diffraction (LEED) and photoelectron diffraction (XPD). The Ge surface concentrations (x) obtained from the ratios of Ge and Si core level intensities are systematically higher than those obtained by the respective evaporation fluxes. This indicates a Ge enrichment in the first overlayers confirmed by Ge-like UPS valence band spectra. The structured crystallographic character of the epilayers is ascertained by LEED and XPD polar scans in the (100) plane since the Ge Auger LMM and the Si 2p XPD intensity patterns from the Si1-xGex epilayers are identical to those of the Si substrate. The residual stress in the epilayer is determined by ex-situ X-ray diffraction (XRD) which also allows, as Rutherford Back Scattering (RBS), Ge concentration determinations
- …