230 research outputs found

    A fast ethanol assay to detect seed deterioration

    Get PDF
    The most common way to test seed quality is to use a simple and reliable but time- and space-consuming germination test. In this paper we present a fast and simple method to analyse cabbage seed deterioration by measuring ethanol production from partially imbibed seeds. The method uses a modified breath analyser and is simple compared to gas chromatographic or enzymatic procedures. A modified method using elevated temperatures (40°C instead of 20°C) shortened the assay time and improved its sensitivity. The analysis showed an inverse correlation between ethanol production and seed quality (e.g. the final percentages or speed of germination and the number of normal seedlings). The increase in ethanol production was observed when cabbage seeds were deteriorated by storage under ambient conditions or hot water treatments, both of which reduced the number of normal seedlings. Premature seeds produced more ethanol upon imbibition than mature seeds. Ethanol production occurred simultaneously with oxygen consumption, indicating that lack of oxygen is not the major trigger for ethanol production

    Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFS1 in vivo

    Get PDF
    Contains fulltext : 69887.pdf ( ) (Open Access)BACKGROUND: There is limited knowledge on the extent and dynamics of the mucosal response to commensal and probiotic species in the human intestinal lumen. This study aimed to identify the acute, time-dependent responses of intestinal mucosa to commensal Lactobacillus plantarum WCFS1 in vivo in two placebo-controlled human intervention studies in healthy volunteers. Transcriptional changes in duodenal mucosa upon continuous intraduodenal infusion of L. plantarum WCFS1 for one- and six h, respectively, were studied using oro- and nasogastric intubations with dedicated orogastric catheters and tissue sampling by standard flexible gastroduodenoscopy. RESULTS: One- and six-h exposure of small intestinal mucosa to L. plantarum WCFS1 induced differential expression of 669 and 424 gene reporters, respectively. While short-term exposure to L. plantarum WCFS1 inhibited fatty acid metabolism and cell cycle progression, cells switched to a more proliferative phase after prolonged exposure with an overall expression profile characterized by upregulation of genes involved in lipid metabolism, cellular growth and development. Cell death and immune responses were triggered, but cell death-executing genes or inflammatory signals were not expressed. Proteome analysis showed differential expression of several proteins. Only the microsomal protein 'microsomal triglyceride transfer protein' was regulated on both the transcriptional and the protein level in all subjects. CONCLUSION: Overall, this study showed that intestinal exposure to L. plantarum WCFS1 induced consistent, time-dependent transcriptional responses in healthy intestinal mucosa. This extensive exploration of the human response to L. plantarum WCFS1 could eventually provide molecular support for specific or probiotic activity of this strain or species, and exemplifies the strength of the applied technology to identify the potential bio-activity of microbes in the human intestine

    Perinatal exposure of rats to a maternal diet with varying protein quantity and quality affects the risk of overweight in female adult offspring

    Get PDF
    The maternal protein diet during the perinatal period can program the health of adult offspring. This study in rats evaluated the effects of protein quantity and quality in the maternal diet during gestation and lactation on weight and adiposity in female offspring. Six groups of dams were fed a high-protein (HP; 47% protein) or normal-protein (NP; 19% protein) isocaloric diet during gestation (G) using either cow's milk (M), pea (P) or turkey (T) proteins. During lactation, all dams received the NP diet (protein source unchanged). From postnatal day (PND) 28 until PND70, female pups (n=8) from the dam milk groups were exposed to either an NP milk diet (NPMW) or to dietary self-selection (DSS). All other pups were only exposed to DSS. The DSS design was a choice between five food cups containing HPM, HPP, HPT, carbohydrates or lipids. The weights and food intakes of the animals were recorded throughout the study, and samples from offspring were collected on PND70. During the lactation and postweaning periods, body weight was lower in the pea and turkey groups (NPG and HPG) versus the milk group (P<.0001). DSS groups increased their total energy and fat intakes compared to the NPMW group (P<.0001). In all HPG groups, total adipose tissue was increased (P=.03) associated with higher fasting plasma leptin (P<.05). These results suggest that the maternal protein source impacted offspring body weight and that protein excess during gestation, irrespective of its source, increased the risk of adiposity development in female adult offspring

    Pedigree genotyping: a new pedigree-based approach of QTL identification and allele mining by exploiting breeding material

    Get PDF
    To date, molecular markers have been made available for many economically important traits. Unfortunately, lack of knowledge of their allelic variation hampers their full exploitation in commercial breeding programs. These markers have usually been identified in one single cross. Consequently, only one or two favourable alleles of the related QTL are identified and may be exploited for marker-assisted breeding (MAB), while a breeding program may include several alleles. Selection for only these alleles means that many favourable genotypes are ignored, which decreases efficiency and leads to genetic erosion. A new approach, called pedigree genotyping, allows the identification and exploitation of the majority of alleles present in an ongoing breeding program. This is achieved by including breeding material itself in QTL detection, so covering multiple generations and linking many crosses through their common ancestors in the pedigree. The principle of Identity by Descent (IBD) is utilised to express the identity of an allele of a modern selection in terms of alleles of founding cultivars. These founder alleles are used as factors in statistical analysis. Co-dominant markers, like SSR (= microsatellite) markers, are essential in this approach since they are able to connect cultivars, breeding selections and progenies at the molecular marker level by monitoring specific chromosomal segments along family trees. Additional advantages of the use of breeding genetic material are (1) a major reduction in experimental costs since plant material is already available and phenotyped by default (2) continuity over generations within breeding programs with regard to marker research (3) the testing of QTL-alleles against a wide range of genetic backgrounds, making results generally applicable (4) possibility to explore intra- as well as inter-QTL interactions. Fruit firmness in apple is used as an example to illustrate the principles of this powerful approach to detect QTLs and estimate their allelic variation. Prospects for strawberry are also indicate
    • …
    corecore