252 research outputs found
Observation of hard scattering in photoproduction events with a large rapidity gap at HERA
Events with a large rapidity gap and total transverse energy greater than 5
GeV have been observed in quasi-real photoproduction at HERA with the ZEUS
detector. The distribution of these events as a function of the
centre of mass energy is consistent with diffractive scattering. For total
transverse energies above 12 GeV, the hadronic final states show predominantly
a two-jet structure with each jet having a transverse energy greater than 4
GeV. For the two-jet events, little energy flow is found outside the jets. This
observation is consistent with the hard scattering of a quasi-real photon with
a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
Search for Continuous and Transient Neutrino Emission Associated with IceCube's Highest-Energy Tracks: An 11-Year Analysis
IceCube alert events are neutrinos with a moderate-to-high probability of
having astrophysical origin. In this study, we analyze 11 years of IceCube data
and investigate 122 alert events and a selection of high-energy tracks detected
between 2009 and the end of 2021. This high-energy event selection (alert
events + high-energy tracks) has an average probability of to be of
astrophysical origin. We search for additional continuous and transient
neutrino emission within the high-energy events' error regions. We find no
evidence for significant continuous neutrino emission from any of the alert
event directions. The only locally significant neutrino emission is the
transient emission associated with the blazar TXS~0506+056, with a local
significance of , which confirms previous IceCube studies. When
correcting for 122 test positions, the global p-value is and is
compatible with the background hypothesis. We constrain the total continuous
flux emitted from all 122 test positions at 100~TeV to be below ~(TeV cm s) at 90% confidence assuming an
spectrum. This corresponds to 4.5% of IceCube's astrophysical diffuse flux.
Overall, we find no indication that alert events, in general, are linked to
lower-energetic continuous or transient neutrino emission.Comment: Accepted by Ap
A Search for Coincident Neutrino Emission from Fast Radio Bursts with Seven Years of IceCube Cascade Events
This paper presents the results of a search for neutrinos that are spatially
and temporally coincident with 22 unique, non-repeating Fast Radio Bursts
(FRBs) and one repeating FRB (FRB121102). FRBs are a rapidly growing class of
Galactic and extragalactic astrophysical objects that are considered a
potential source of high-energy neutrinos. The IceCube Neutrino Observatory's
previous FRB analyses have solely used track events. This search utilizes seven
years of IceCube's cascade events which are statistically independent of the
track events. This event selection allows probing of a longer range of extended
timescales due to the low background rate. No statistically significant
clustering of neutrinos was observed. Upper limits are set on the
time-integrated neutrino flux emitted by FRBs for a range of extended
time-windows
First Search for Unstable Sterile Neutrinos with the IceCube Neutrino Observatory
We present a search for an unstable sterile neutrino by looking for a
matter-induced signal in eight years of atmospheric data collected
from 2011 to 2019 at the IceCube Neutrino Observatory. Both the (stable)
three-neutrino and the 3+1 sterile neutrino models are disfavored relative to
the unstable sterile neutrino model, though with -values of 2.5\% and
0.81\%, respectively, we do not observe evidence for 3+1 neutrinos with
neutrino decay. The best-fit parameters for the sterile neutrino with decay
model from this study are ,
, and , where
is the decay-mediating coupling. The preferred regions from short-baseline
oscillation searches are excluded at 90\% C.L
Limits on Neutrino Emission from GRB 221009A from MeV to PeV using the IceCube Neutrino Observatory
Gamma-ray bursts (GRBs) have long been considered a possible source of
high-energy neutrinos. While no correlations have yet been detected between
high-energy neutrinos and GRBs, the recent observation of GRB 221009A - the
brightest GRB observed by Fermi-GBM to date and the first one to be observed
above an energy of 10 TeV - provides a unique opportunity to test for hadronic
emission. In this paper, we leverage the wide energy range of the IceCube
Neutrino Observatory to search for neutrinos from GRB 221009A. We find no
significant deviation from background expectation across event samples ranging
from MeV to PeV energies, placing stringent upper limits on the neutrino
emission from this source.Comment: Version in ApJ Letters Focus on the Ultra-luminous Gamma-Ray Burst
GRB 221009
Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing
We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011–2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2θ23=0.51±0.05 and Δm232=2.41±0.07×10−3 eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties
Observation of high-energy neutrinos from the Galactic plane
The origin of high-energy cosmic rays, atomic nuclei that continuously impact
Earth's atmosphere, has been a mystery for over a century. Due to deflection in
interstellar magnetic fields, cosmic rays from the Milky Way arrive at Earth
from random directions. However, near their sources and during propagation,
cosmic rays interact with matter and produce high-energy neutrinos. We search
for neutrino emission using machine learning techniques applied to ten years of
data from the IceCube Neutrino Observatory. We identify neutrino emission from
the Galactic plane at the 4.5 level of significance, by comparing
diffuse emission models to a background-only hypothesis. The signal is
consistent with modeled diffuse emission from the Galactic plane, but could
also arise from a population of unresolved point sources.Comment: Submitted on May 12th, 2022; Accepted on May 4th, 202
- …