374 research outputs found

    Forebrain neurocircuitry associated with human reflex cardiovascular control

    Get PDF
    © 2015 Shoemaker and Goswami. Physiological homeostasis depends upon adequate integration and responsiveness of sensory information with the autonomic nervous system to affect rapid and effective adjustments in end organ control. Dysregulation of the autonomic nervous system leads to cardiovascular disability with consequences as severe as sudden death. The neural pathways involved in reflexive autonomic control are dependent upon brainstem nuclei but these receive modulatory inputs from higher centers in the midbrain and cortex. Neuroimaging technologies have allowed closer study of the cortical circuitry related to autonomic cardiovascular adjustments to many stressors in awake humans and have exposed many forebrain sites that associate strongly with cardiovascular arousal during stress including the medial prefrontal cortex, insula cortex, anterior cingulate, amygdala and hippocampus. Using a comparative approach, this review will consider the cortical autonomic circuitry in rodents and primates with a major emphasis on more recent neuroimaging studies in awake humans. A challenge with neuroimaging studies is their interpretation in view of multiple sensory, perceptual, emotive and/or reflexive components of autonomic responses. This review will focus on those responses related to non-volitional baroreflex control of blood pressure and also on the coordinated responses to non-fatiguing, non-painful volitional exercise with particular emphasis on the medial prefrontal cortex and the insula cortex

    Forebrain neurocircuitry associated with human reflex cardiovascular control.

    Get PDF
    Physiological homeostasis depends upon adequate integration and responsiveness of sensory information with the autonomic nervous system to affect rapid and effective adjustments in end organ control. Dysregulation of the autonomic nervous system leads to cardiovascular disability with consequences as severe as sudden death. The neural pathways involved in reflexive autonomic control are dependent upon brainstem nuclei but these receive modulatory inputs from higher centers in the midbrain and cortex. Neuroimaging technologies have allowed closer study of the cortical circuitry related to autonomic cardiovascular adjustments to many stressors in awake humans and have exposed many forebrain sites that associate strongly with cardiovascular arousal during stress including the medial prefrontal cortex, insula cortex, anterior cingulate, amygdala and hippocampus. Using a comparative approach, this review will consider the cortical autonomic circuitry in rodents and primates with a major emphasis on more recent neuroimaging studies in awake humans. A challenge with neuroimaging studies is their interpretation in view of multiple sensory, perceptual, emotive and/or reflexive components of autonomic responses. This review will focus on those responses related to non-volitional baroreflex control of blood pressure and also on the coordinated responses to non-fatiguing, non-painful volitional exercise with particular emphasis on the medial prefrontal cortex and the insula cortex

    Promising points for intervention in re-imagining partnered research in health services comment on “Experience of health leadership in partnering with university-based researchers in Canada – A call to ‘re-imagine’ research”

    Get PDF
    In this commentary, we respond to Bowen and colleagues’ empirical study of research partnerships between Canadian health organizations and university-based investigators. We draw on our experiences of university and health-services partnerships to elaborate on some of the misalignments between researchers and health services leaders identified by Bowen et al. We take up Bowen and colleagues’ call to re-imagine research by proposing three promising points of intervention in research partnerships. These are: (1) orient towards research relationships rather than project-based partnerships; (2) recognize shared and diverging expectations and objectives; and (3) foster a more nuanced understanding of mutual gains

    Impact of Long-Term Endurance Training vs. Guideline-Based Physical Activity on Brain Structure in Healthy Aging

    Get PDF
    Brain structure is a fundamental determinant of brain function, both of which decline with age in the adult. Whereas short-term exercise improves brain size in older adults, the impact of endurance training on brain structure when initiated early and sustained throughout life, remains unknown. We tested the hypothesis that long-term competitive aerobic training enhances cortical and subcortical mass compared to middle to older-aged healthy adults who adhere to the minimum physical activity guidelines. Observations were made in 16 masters athletes (MA; 53 ± 6 years, VO2max = 55 ± 10 ml/kg/min, training \u3e 15 years), and 16 active, healthy, and cognitively intact subjects (HA; 58 ± 9 years, VO2max = 38 ± 7 ml/kg/min). T1-weighted structural acquisition at 3T enabled quantification of cortical thickness and subcortical gray and white matter volumes. Cardiorespiratory fitness correlated strongly with whole-brain cortical thickness. Subcortical volumetric mass at the lateral ventricles, R hippocampus, R amygdala, and anterior cingulate cortex, correlated with age but not fitness. In a region-of-interest (ROI) group-based analysis, MA expressed greater cortical thickness in the medial prefrontal cortex, pre and postcentral gyri, and insula. There was no effect of group on the rate of age-related cortical or subcortical decline. The current data suggest that lifelong endurance training that produces high levels of cardiorespiratory fitness, builds cortical reserve early in life, and sustains this benefit over the 40–70 year age span. This reserve likely has important implications for neurological health later in life

    Impact of long-term endurance training vs. guideline-based physical activity on brain structure in healthy aging

    Get PDF
    © 2016 Wood, Nikolov and Shoemaker. Brain structure is a fundamental determinant of brain function, both of which decline with age in the adult. Whereas short-term exercise improves brain size in older adults, the impact of endurance training on brain structure when initiated early and sustained throughout life, remains unknown. We tested the hypothesis that long-term competitive aerobic training enhances cortical and subcortical mass compared to middle to older-aged healthy adults who adhere to the minimum physical activity guidelines. Observations were made in 16 masters athletes (MA; 53 ± 6 years, VO2max = 55 ± 10 ml/kg/min, training \u3e 15 years), and 16 active, healthy, and cognitively intact subjects (HA; 58 ± 9 years, VO2max = 38 ± 7 ml/kg/min). T1-weighted structural acquisition at 3T enabled quantification of cortical thickness and subcortical gray and white matter volumes. Cardiorespiratory fitness correlated strongly with whole-brain cortical thickness. Subcortical volumetric mass at the lateral ventricles, R hippocampus, R amygdala, and anterior cingulate cortex, correlated with age but not fitness. In a region-of-interest (ROI) group-based analysis, MA expressed greater cortical thickness in the medial prefrontal cortex, pre and postcentral gyri, and insula. There was no effect of group on the rate of age-related cortical or subcortical decline. The current data suggest that lifelong endurance training that produces high levels of cardiorespiratory fitness, builds cortical reserve early in life, and sustains this benefit over the 40-70 year age span. This reserve likely has important implications for neurological health later in life

    Cortical Circuitry Associated With Reflex Cardiovascular Control in Humans: Does the Cortical Autonomic Network Speak or Listen During Cardiovascular Arousal

    Get PDF
    Beginning with clinical evidence of fatal cardiac arrhythmias in response to severe stress, in epileptic patients, and following stroke, the role of the cerebral cortex in autonomic control of the cardiovascular system has gained both academic and clinical interest. Studies in anesthetized rodents have exposed the role of several forebrain regions involved in cardiovascular control. The introduction of functional neuroimaging techniques has enabled investigations into the conscious human brain to illuminate the temporal and spatial activation patterns of cortical regions that are involved with cardiovascular control through the autonomic nervous system. This symposia report emphasizes the research performed by the authors to understand the functional organization of the human forebrain in cardiovascular control during physical stressors of baroreceptor unloading and handgrip exercise. The studies have exposed important associations between activation patterns of the insula cortex, dorsal anterior cingulate, and the medial prefrontal cortex and cardiovascular adjustments to physical stressors. Furthermore, these studies provide functional anatomic evidence that sensory signals arising from baroreceptors and skeletal muscle are represented within the insula cortex and the medial prefrontal cortex, in addition to the sensory cortex. Thus, the cortical pathways subserving reflex cardiovascular control integrate viscerosensory inputs with outgoing traffic that modulates the autonomic nervous system. © 2012 Wiley Periodicals, Inc.

    Methods and considerations for the analysis and standardization of assessing muscle sympathetic nerve activity in humans

    Get PDF
    © 2015 Elsevier B.V.. The technique of microneurography and the assessment of muscle sympathetic nerve activity (MSNA) are used in laboratories throughout the world. The variables used to describe MSNA, and the criteria by which these variables are quantified from the integrated neurogram, vary among studies and laboratories and, therefore, can become confusing to those starting to learn the technique. Therefore, the purpose of this educational review is to discuss guidelines and standards for the assessment of sympathetic nervous activity through the collection and analysis of MSNA. This review will reiterate common practices in the collection of MSNA, but will also introduce considerations for the evaluation and physiological inference using MSNA

    Methods and considerations for the analysis and standardization of assessing muscle sympathetic nerve activity in humans.

    Get PDF
    The technique of microneurography and the assessment of muscle sympathetic nerve activity (MSNA) are used in laboratories throughout the world. The variables used to describe MSNA, and the criteria by which these variables are quantified from the integrated neurogram, vary among studies and laboratories and, therefore, can become confusing to those starting to learn the technique. Therefore, the purpose of this educational review is to discuss guidelines and standards for the assessment of sympathetic nervous activity through the collection and analysis of MSNA. This review will reiterate common practices in the collection of MSNA, but will also introduce considerations for the evaluation and physiological inference using MSNA

    Assessing the sensitivity of multi-distance hsNIRS for measuring changes in oxCCO in the brain

    Get PDF
    A hybrid multi-distance hyperspectral near-infrared spectroscopy (hsNIRS) and diffuse correlation spectroscopy (DCS) optical system was used to test transient changes in cytochrome c oxidase (oxCCO) in the brain during carotid compressions (CC) and hypercapnia

    Impact of age on cerebrovascular dilation versus reactivity to hypercapnia.

    Get PDF
    This study quantified the effect of age on cerebrovascular reactivity and cerebrovascular conductance while accounting for differences in grey matter volume in younger (YA: n = 12; 24 ± 4 years, six females) and older adults (OA: n = 10; 66 ± 7 years; five females). Cerebral blood flow velocity (CBFV; transcranial Doppler) in the middle cerebral artery (MCA), MCA cross-sectional area (CSA), intracranial volumes (magnetic resonance imaging), and mean arterial pressure (MAP; Finometer), were measured under normocapnic and hypercapnic (6% carbon dioxide) conditions. Cerebral blood flow (CBF) was quantified from CBFV and MCA CSA and normalized to grey matter volume. Grey matter volume was 719 ± 98 mL in YA and 622 ± 50 mL in OA (P = 0.009). Cerebrovascular reactivity (%ΔCBF/Δ
    corecore