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Cortical Circuitry Associated With
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Network ‘‘Speak’’ Or ‘‘Listen’’ During
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ABSTRACT
Beginning with clinical evidence of fatal cardiac arrhythmias in

response to severe stress, in epileptic patients, and following stroke, the
role of the cerebral cortex in autonomic control of the cardiovascular sys-
tem has gained both academic and clinical interest. Studies in anesthetized
rodents have exposed the role of several forebrain regions involved in car-
diovascular control. The introduction of functional neuroimaging techni-
ques has enabled investigations into the conscious human brain to
illuminate the temporal and spatial activation patterns of cortical regions
that are involved with cardiovascular control through the autonomic nerv-
ous system. This symposia report emphasizes the research performed by
the authors to understand the functional organization of the human fore-
brain in cardiovascular control during physical stressors of baroreceptor
unloading and handgrip exercise. The studies have exposed important
associations between activation patterns of the insula cortex, dorsal ante-
rior cingulate, and the medial prefrontal cortex and cardiovascular adjust-
ments to physical stressors. Furthermore, these studies provide functional
anatomic evidence that sensory signals arising from baroreceptors and
skeletal muscle are represented within the insula cortex and the medial
prefrontal cortex, in addition to the sensory cortex. Thus, the cortical path-
ways subserving reflex cardiovascular control integrate viscerosensory
inputs with outgoing traffic that modulates the autonomic nervous system.
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Cardiovascular homeostasis requires reflex-mediated
changes in cardiac and vascular function. The reflexive
nature of cardiovascular control indicates the presence of
afferent and efferent arms of neural processes that sense
and alter conditions in the target tissues. With regards to
cardiovascular control, the successful control of blood
pressure and distribution of blood flow in response to
stress is under the control of, and is dependent upon,
rapid adjustments in the outflow of the parasympathetic
(PNS) and sympathetic (SNS) nervous systems. Our
interests in understanding reflex cardiovascular control
are within the context of physical stressors such as
orthostasis or exercise. In the case of orthostatic stress,
the baroreflex loop is the primary mechanism in place to
defend inappropriate oscillations in blood pressure
through rapid adjustments in heart rate and vascular
resistance. The neural control strategies become more
complicated in the context of volitional effort, such as
exercise, where, in addition to descending feed-forward
processes that coordinate muscle activation with cardio-
vascular adjustments (Krogh and Lindhard, 1913;
Mitchell, 1990), reflex feedback information from muscle
sensory afferents as well as the baroreceptor afferents
converge upon the neural structures involved in adjusting
SNS and PNS outflow. Whereas considerable effort has
been applied to understanding the autonomic neural
pathways and nuclei of the brainstem in the service of
SNS and PNS outflow (Loewy and McKellar, 1980; Spyer,
1994; Guyenet, 2006), less is known about the pathways
from higher cortical centers that modulate autonomic
outflow, particularly in conscious humans. However, con-
siderable clinical observations, as well as experimental
evidence from rodents, indicate that these supramedul-
lary centers play a critical role in the neural control of
the cardiovascular system. The introduction of noninva-
sive neuroimaging technology has opened opportunities
to explore the conscious human brain and expose the cort-
ical regions associated with cardiovascular control.

Following a brief historical perspective, this review will
outline the major observations from studies in our labora-
tory regarding the organization of the cerebral cortex for
autonomic cardiovascular control in conscious humans.
Earlier, investigations using anesthetized rodent models
established the primary cortical regions of interest, and
these have been reviewed extensively (Cechetto and
Saper, 1990; Cechetto and Shoemaker, 2009). This article
will emphasize our more recent work in conscious humans
using functional magnetic resonance imaging (fMRI) tech-
niques. Where applicable, reference will be made to
earlier rodent studies. A fundamental issue with fMRI
studies is the ambiguity of the blood-oxygenation-level-de-
pendent (BOLD) signal. Therefore, we also present our
recent studies examining the cortical representation of
sensory inputs from muscle and baroreceptor afferents.
The collective outcomes of the cortical architecture related
to cardiovascular arousal, as well as those cortical regions
associated with viscerosensory activation, provide a
deeper understanding of cortical activation patterns
within the context of cardiovascular control.

HISTORICAL PERSPECTIVE

The term ‘‘reflex cardiovascular control’’ refers to the
ongoing adjustments in sympathetic and parasympa-
thetic outflow that modify cardiac and vascular tissue in

the pursuit of tightly controlled blood pressure (Fadel
et al., 2001). Within this context, considerable research
has established the reflexive behavior, as well as the an-
atomical brainstem pathways (reviews indicated above)
that subserve sensory and efferent signals that reflex-
ively control cardiovascular arousal (O’Leary, 1993,
1996; Augustyniak et al., 2000; Fadel et al., 2001;
Machado, 2001; Raven et al., 2002; Boushel, 2010; Fadel
and Raven, 2011). Nonetheless, several observations
point to the cerebral cortex as a site of important modu-
latory influence over autonomic cardiovascular control.
Some examples of such observations are listed below:

1) Based on observations of respiratory and heart rate
responses at the exercise onset, Krogh and Lindhard
(Krogh and Lindhard, 1913) proposed the concept of
‘‘central command’’ to describe the ability of the brain
to coordinate concurrently the cardiovascular, respira-
tory, and skeletal muscle responses to volitional or
effortful exercise. Of course, the details of the brain’s
involvement in such rapid and coordinated adjust-
ments to exercise were not available at that time.

2) Walter B. Cannon’s characterization of ‘‘voodoo death’’
in 1942 illustrated the important and sometimes fatal
role that psychologic stress can have on cardiovascu-
lar function (Cannon, 2002).

3) Clinical observations made in the 1980s indicated
that fatalities following cerebral stroke often were
due to catastrophic cardiac arrhythmias (Myers et al.,
1982; Cheung and Hachinski, 2003). Of particular im-
portance were the outcomes of stroke in the insula
cortex region. Subsequent experimental studies in
rodents, summarized below, established the insula
cortex as a region with critical impact on cardiopatho-
logic outcomes from hyperadrenergic activation
(Oppenheimer et al., 1991; Yasui et al., 1991; Yoon
et al., 1997).

4) Studies on patients with cortical lesions demonstrate
the role of the medial prefrontal cortex in modulating
sympathetic nerve activity. In particular, such
patients show blunted emotion, poor decision-making
and a failed alteration in the skin conductance
response that is mediated mainly by the sympathetic
nervous system (Damasio, 1994; Bechara et al., 1996,
1997). These data link the autonomic nervous system
to many cognitive tasks and emotive experiences.

EXPERIMENTAL STUDIES IN RODENTS

The rat cortex and forebrain have been studied exten-
sively within the context of cardiovascular control and
cardiopathology. In addition to documenting the impor-
tant role of the insula cortex in cardiac arrythmias,
introduced above, Cechetto et al. outlined the important
role of the insula as a somatotopically organized region
that receives visceral sensory information and is somehow
involved in subsequent adjustments to cardiovascular con-
trol (Cechetto et al., 1989; Oppenheimer and Cechetto,
1990; Oppenheimer et al., 1990, 1991; Yasui et al., 1991;
Butcher et al., 1993; Butcher and Cechetto, 1995; Cechetto
and Chen, 1995; Cheung et al., 1997). Through these stud-
ies, and others, the reciprocal innervations of various
cortical regions associated with afferent and efferent car-
diovascular control were established (Cechetto and Saper,
1990). Collectively, the studies in rodents established the
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important role of various regions within the forebrain for
cardiovascular control including the insula, thalamus,
infralimbic cortex, amygdala, and basal ganglia regions.
Thus, these studies identified the cortical organization for
cardiovascular control and emphasized the regions of in-
terest involved in autonomic outflow. Subsequently,
studies in humans were conducted to establish the trans-
lational success of the rodent models, and also to avoid
concerns regarding the negative impact of anesthesia on
neural adjustments to stress and the subsequent neuro-
vascular outcomes. Electrophysiologic interventions
during surgery of epileptics supported the idea that the
insula affected cardiovascular control and further pointed
to the possibility of important lateralization of the insula
cortices such that the left insula affected PNS whereas the
right insula was predominantly SNS in their cardiovascu-
lar effects (Oppenheimer et al., 1992, 1996). Through
these approaches, the forebrain architecture associated
with cardiovascular control was mapped and experimen-
tal evidence was provided that exposed the forebrain as a
critical site in the modulation, or restraint, of autonomic
balance. The concerns regarding the role of the cortex in
fatal cardiac arrhythmias are replicated in cases of sudden
unexplained death in epileptic seizures (SUDEP) (Scorza
et al., 2009).

As noted above, a challenge in examining cortical
function from an experimental rodent model is the
inability to study the brain in its unanesthetized intact
state and from a perspective of what various regions are
doing together rather than just one at a time. Concur-
rent with the buildup of clinical understanding, and
experimental work in rodents, the 1990s were the dec-
ade in which functional magnetic resonance imaging
(fMRI) technology was introduced (Ogawa et al., 1990,
1992), opening a new era in neuroscience. As a nonra-
dioactive and noninvasive method, fMRI enables
advanced understanding of the brain in its natural state
of activation without the confounding impact of anesthe-
sia on the autonomic nervous system. Specifically, this
method enables detection of the group of brain regions
that changed their activity patterns in real time, all at
the same time. We have used fMRI to establish the
group of cortical regions whose activity levels change
predictably and reproducibly in response to orthostatic
or exercise-based cardiovascular arousal. The exact
physiologic purpose of each region of interest cannot be
determined solely by the use of fMRI methods. However,
using a variety of volitional, passive and sensory stimu-
lation experimental paradigms along with physiologic
outcomes, the roles of two particular regions are becom-
ing clearer, namely the insula and medial prefrontal
cortex.

EXPLORING THE CORTICAL ARCHITECTURE
ASSOCIATED WITH CARDIOVASCULAR
CONTROL IN CONSCIOUS HUMANS

Functional magnetic resonance imaging (fMRI) is one
technique that enables noninvasive assessment of real-
time changes in cortical activation patterns that can be
applied in experimental settings. Functional MRI takes
advantage of the paramagnetic properties of hemoglobin
that vary with the degree of oxygenation (Ogawa et al.,
1990). Thus, changes in blood flow in response to
changes in neural activity can be detected and used to

quantify and locate the range of regions involved in
response to particular stimuli. The blood-oxygenation-
level-dependent (BOLD) signal provided by fMRI is com-
plex in its origin (Arthurs and Boniface, 2002) but
reflects well the temporal and spatial aspects of regional
or focal cortical activation patterns in response to partic-
ular stimuli. As such, this method complements invasive
electrophysiologic and/or pharmacologic approaches that
study single neurons or regions.

A commonly used approach to understand the func-
tional impact of cortical activation patterns is to
correlate these with patterns of change in blood pres-
sure, heart rate, efferent sympathetic nerve activity or a
stimulus signal such as strain gauge force, during
maneuvers that elicit cardiovascular stress such as
handgrip exercise or lower body negative pressure (to
mimic orthostatic stress). Because of difficulties in meas-
uring peripheral physiologic signals in the MRI scanner
concurrent measures that reflect autonomic nervous sys-
tem variables are limited to indirect analog
measurements such as heart rate or skin conductance
responses (Wong et al., 2011). To bring further meaning
to cortical activation patterns studies are replicated in
the fMRI session as well as a physiology laboratory ses-
sion. In this context, reproducibility of cortical patterns
associated with identical stimuli are required, and have
been established in our hands (Kimmerly et al., 2004,
2005). Moreover, the regions associated with cardiovas-
cular adjustments to stress are more-or-less replicated
across many stressors from many laboratories. Specifi-
cally, many groups have examined the cortical patterns
associated with cardiovascular responses (primarily
heart rate) during physical (King et al., 1999; Critchley
et al., 2000, 2003; Gianaros et al., 2004, 2005; Critchley,
2005; Kimmerly et al., 2005; Wong et al., 2007b; Gos-
wami et al., 2011), cognitive (Gianaros et al., 2004, 2005;
Critchley et al., 2000, 2003), and emotional (Lane et al.,
2008) stressors. Overall, the regions outlined below
appear to form the core cortical regions associated with
cardiovascular control.

Cortical Circuitry Associated With
Cardiovascular Arousal

The inaugural study of King et al. (1999) illustrated
the utility of fMRI to expose the complexity of cortical
activation that occurs during straining efforts that
induced large cardiovascular responses. Using short but
maximal handgrip exercise, Valsalva’s maneuver and a
maximal inspiration task, these authors observed
increased cortical activation that was localized in the in-
sular cortex, the posterior regions of the thalamus, and
the medial prefrontal cortex (MPFC). Notably, increased
MPFC activity during the recovery phase of Valsalva’s
maneuver occurred concurrently with a decline in heart
rate. This point becomes important below when HR cor-
relations with MPFC activation or deactivation begin to
expose an important role for this frontal region in cardi-
ovagal control. Regions of brain that were less activated
compared with baseline were not explored in this early
study. Also, each of the handgrip, maximal inspiration
and Valsalva’s maneuver segments elicited significant
changes in blood pressure, heart rate, and volitional
effort sense (straining). Thus, the cortical patterns were
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observed within the context of complex stimuli from
muscle, baroreceptor and top-down neural sources.

To examine the forebrain architecture associated with
baroreflex-mediated sympathetic activation in the ab-
sence of volitional effort or changes in blood pressure, a
model of graded lower body suction was developed to
simulate orthostasis while the participant remains
supine (Kimmerly et al., 2005). With lower body suction
it is possible to grade the orthostatic stress, and thereby
the magnitude of baroreflex unloading, so that either a
change in sympathetic nerve activity occurs without a
change in heart rate (�15 mmHg) or both sympathetic
activation and heart rate changes occur (such �35
mmHg suction). Cortical regions demonstrating
increased activity that correlated with higher HR and
greater levels of lower body suction included the right
superior posterior insula, frontoparietal cortex and the
left cerebellum. Conversely, using the identical statisti-
cal paradigm, bilateral anterior insular cortices, the
right anterior cingulate, orbitofrontal cortex, amygdala,
mediodorsal nucleus of the thalamus and midbrain
showed decreased neural activation. These findings were
replicated in additional studies using direct unloading of
baroreceptors (Kimmerly et al., 2007a,b). Such locations
also covary with changes in cardiovagal baroreflex sensi-
tivity induced by psychological stress in humans
(Gianaros et al., 2011). Further, the insula cortex has
long been associated with baroreflex cardiovascular con-
trol in anesthetized rodents (Saleh and Connell, 1998;
Zhang et al., 1998).

To study the forebrain regions and patterns involved
with exercise, the cortical response to graded moderate
intensity handgrip (HG) exercise was assessed (Wong
et al., 2007a,b; Goswami et al., 2011). When performed
at <40% of maximal contractile force for brief (e.g., <30
sec) in young adults, HG elicits an intensity-dependent
tachycardia (in most individuals) that is apparent within
the first 1–2 sec of the handgrip onset, growing to about
10–15 bpm increase over the 30-sec contraction duration
(Fig. 1). Pharmacologic blockade evidence suggests that
PNS withdrawal mechanistically controls the bulk of
this rapid HR response (Hollander and Bouman, 1975;
Fagraeus and Linnarsson, 1976; Mitchell et al., 1989). It
follows that regions of the brain that change their activ-
ity in association with these rapid HR changes may
reflect sites that modulate PNS. With HG, the motor cor-
tex, bilateral insula, thalamus, cerebellum, and basal
ganglia regions are all increased in their activation
(Wong et al., 2007b). However, the ventral medial pre-
frontal cortex (vMPFC) was the only region to correlate
strongly and inversely with heart rate changes with a
time course and magnitude of change that reflected var-
iations in exercise intensities. This patterned response
was not affected by one’s handedness or sex although
females tend to produce smaller HR and cortical
responses for the same relative workload (Wong et al.,
2007a). Similar deactivation patterns within the medial
prefrontal/genual ACC region that correlated inversely
with HR were noted in the LBNP study above. Thus,
handgrip maneuvers that appear to emphasize parasym-
pathetic withdrawal elicit increased cortical responses in
the posterior inferior bilateral insula activation and deac-
tivation within the MPFC. This pattern has been
observed in repeated studies (Wong et al., 2007a,b; Gos-
wami et al., 2011). Furthermore, this strong relationship

between MPFC and HR is consistent with other reports
examining the brain-heart relationship during cognitive
and emotional stressors (Critchley et al., 2000, 2003,
2004; Critchley, 2004, 2005; Gianaros et al., 2004, 2005;
Lane et al., 2008).

Thus, the evidence from lower body suction and hand-
grip exercise models indicates that changes in HR are
consistently associated with reduced activation within the
vMPFC and subgenual ACC complex. These observations
are consistent with extensive functional anatomical stud-
ies in lower animals which indicate the extensive
projections from this region to brain stem cardiovascular
centers (Verberne and Owens, 1998). While pharmacologic
evidence discussed above suggests that PNS withdrawal
mediates this rapid HR response, there may be a similar
time course of sympathetic activation of visceral organs
(Momen et al., 2005; Frances et al., 2008). However, condi-
tions under which sympathetic activation may be
responsible for the rapid HR change have not been stud-
ied. Of note, moderate intensity handgrip exercise also
elicits increased activation within the supplementary
motor area, basal ganglia, hippocampus, motor cortex,
thalamus, and cerebellum. Of these, the cerebellum ver-
mis (Bradley et al., 1991) and hippocampus (Ansakorpi
et al., 2004; Castle et al., 2005) have been associated with

Fig. 1. Time course of changes in heart rate (HR; top panel), mean
arterial pressure (MAP; middle panel) during a 30-sec of handgrip
exercise performed at 40% of maximal voluntary contraction (MVC)
strength.
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autonomic cardiovascular modification. Otherwise, these
regions have received minimal attention with regard to
human cardiovascular control.

The above studies were performed under conditions of
short-term and moderate-intensity handgrip to minimize
concurrent blood pressure and sympathetic responses
that occur with exercise. Nonetheless, these studies are
still complicated by the complex neural patterns that
occur at the onset of exercise. In particular, concurrent
cardiovascular arousal, ventilatory activation, and motor
control are coordinated at the exercise onset and are
enveloped in the concept of ‘‘central command’’ (Krogh
and Lindhard, 1913). The cortical activation patterns
associated with central command in general have been
studied in a series of complex studies by Williamson and
colleagues using both SPECT and fMRI imaging (Wil-
liamson et al., 1996, 1999, 2002, 2003). These studies
collectively demonstrate involvement of the insula in
particular as an important region associated with voli-
tional and effortful muscular exercise. These data raise
the important question of the purposefulness of cortical
activation during cardiovascular arousal. Particularly, to
what extent does the insula–amygdala–medial prefron-
tal/anterior cingulate complex impact heart rate alone
versus a broader coordination of physiologic responses
required to initiate and sustain, effortful exercise?

In summary, the regions that consistently are associ-
ated with cardiovascular arousal include the dorsal
anterior cingulate, medial prefrontal cortex/subgenual
anterior cingulate, and insula cortex. Another site com-
monly observed is the amygdala. Sympathetic activation,
studied in our hands only in the context of baroreflex
unloading, is most consistently associated with the supe-
rior, posterior insula cortex (right side) and dorsal ACC.
In our experience, HR responses always correlate nega-
tively with the medial prefrontal cortex. From these
temporal and spatial patterns, the collective evidence
suggests that these regions reflect portions of a network
that processes and supports the complex features associ-
ated with reflex cardiovascular control. Nonetheless,
evidence supporting the concept of an integrated net-
work is required.

Interpretational Issues

Attempts to interpret the role of particular cortical
regions based on BOLD responses must be considered
carefully due to the limitations of this methodological
approach. These challenges include the following: (1)
uncertainty regarding the physiological basis of the
BOLD response, (2) need for short but repeated stimuli
to enhance signal-to-noise, (3) sensitivity to artifacts
generated by movement, or tissue/air interfaces and
global changes in brain blood volume (such as might
occur with changes in blood pressure or ventilation pat-
terns), and, (4) ambiguity in interpretation of the BOLD
signal. Generally, our study designs aim to deal with
such limitations by optimizing the levels of lower body
negative pressure (LBNP) or handgrip to elicit impor-
tant cardiovascular reflex adjustments with minimal
movement or minimal changes in blood pressure and
ventilation. Such practices are important to consider fur-
ther. As mentioned, BOLD imaging offers advantages of
relatively high temporal and spatial resolution, an
advantage that makes this technique sensitive to

changes in heart rate, blood pressure, and ventilation.
This sensitivity to pulsatile or rhythmic physiologic
events can interfere with detection of other signals that
are unrelated to cardiovascular or ventilatory control.
Thus, some neuroimaging specialists treat BOLD oscilla-
tions due to these autonomic variables as nuisance
outcomes to be removed from the overall signal (Iaco-
vella and Hasson, 2011). For example, increases in blood
pressure can, in fact, enhance BOLD signal detection
(Wang et al., 2006; Qiao et al., 2007). This effect likely
includes somatosensory inputs from baroreceptors, an
issue presented in detail below. In contrast, many other
laboratories, such as those reflected in this review, con-
sider these autonomic outcomes to be a theoretically
meaningful component of the BOLD signal. Further, the
sensitivity of cerebrovasculature to changes in blood oxy-
gen and/or carbon dioxide create a concern for
ventilatory patterns and their integration with task-spe-
cific brain activation patterns that may be specific to
different brain regions (Hall et al., 2011).

The issue of interpretational ambiguity in BOLD
responses (i.e., problem no. 4 above), requires special
attention as well. Specifically, although relationships
between cortical activation/deactivation patterns are
exposed by correlations with heart rate or the stimulus
time course, these correlations cannot convey causality
or directional relationships. Two interpretational chal-
lenges arise from this latter limitation. First, by itself,
the BOLD signal does not indicate whether the regions
of activation form an integral network or discreet regions
that are processing information directly or indirectly
related to the stimulus. Second, a single activation pat-
tern cannot inform the viewer regarding the inhibitory
or excitatory nature of the brain’s response or whether
various regions are (a) ‘‘listening’’ to afferent sensory sig-
nals arising in the brain that reflect a cardiovascular
change or (b) ‘‘talking’’ in the sense that they are direct-
ing an efferent motor response to adjust the
cardiovascular status. To illustrate this point, the rapid
increase in heart rate and blood pressure with handgrip
exercise, or the elevated HR during lower body suction,
will stimulate mechanosensor or baroreceptor afferents
in the cardiac chambers, aortic arch and carotid sinus’
whose neural pathways link into the nucleus tractus soli-
taries in the brain stem, with possible subsequent
pathways that project through the thalamus to the
insula, amygdala and other forebrain areas (Cechetto
and Saper, 1990). Furthermore, sensory signals from
muscle spindles arise during muscular work and these
may cause a change in cortical activation; the cortical
irradiation of such muscle sensory signals in humans is
not reported. Finally, even mild handgrip exercise
requires cognitive engagement during volitional effort,
an aspect of the task that will carry its own and perhaps
variable cortical activation pattern. The problem then
arises as to whether the activation patterns observed in
the cortex during handgrip or other cognitive tasks, are
causing (or at least modulating) the heart rate or blood
pressure change or, rather, are representing that change
in sensory input as a cortical activation that does not
influence cardiovascular control. Stated more specifically,
the reduced activation of the vMPFC during HG may
reflect a sensory response to afferent neural signals aris-
ing from the heart or skeletal muscle that signal a
change in cardiac function or muscle tension within the
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MPFC region. Thus, studies are being conducted to
address sensory representation within cortical autonomic
regions and the concurrent cardiovascular outcomes.

SENSORY SIGNALS REFLECTED IN THE
CORTICAL AUTONOMIC NETWORK

Baroreceptor Inputs

Given the concurrent rise in blood pressure and heart
rate at the onset of HG exercise (e.g., Fig. 1), we have
attempted to experimentally separate these two
responses and study their independent effects on cortical
activation patterns. We reasoned that a rise in blood
pressure in the absence of volitional effort or cardiac
responses would expose baroreceptor-mediated sensory
pathways in the forebrain. Such separation can be
accomplished using both pharmacologic and volitional
models. As outlined above, the cardiovascular responses

to the exercise onset in young individuals include a tach-
ycardia that develops within the first cardiac cycle. This
is followed by the pressor response with a �4 sec delay.
Using this delay, Wong developed an event-related proto-
col that included a two-sec handgrip at either 30% or
70% of maximal contraction effort followed by variable
periods of recovery [preliminary data presented in
(Cechetto and Shoemaker, 2009)]. By constructing hemo-
dynamic response models that emphasized either the
handgrip period to capture the HR response, or the
delayed blood pressure response after the cessation of
HG, the cortical responses reflecting only the blood pres-
sure response could be examined in the absence of the
confounding patterns associated with volitional muscu-
lar effort and/or HR changes. These data indicated that
the bilateral insula cortices and MPFC were activated in
response to baroreceptor activation in a manner that
was graded with the magnitude of the pressor response.
It may be important to note that HR was declining as

Fig. 2. Association between the blood oxygenation level dependent
(BOLD) location (left panels), their response time course (black lines in
graphs) and the heart rate time course (red lines). Cortical patterns of
increased (right and left insula; top panels) and decreased activation

(right and left hippocampus, medial frontal gyrus (or medial prefrontal
cortex) associated with infusions of phenylephrine (black down-ward
pointed arrows) or saline (blue arrow). Unpublished results from Topo-
lovec et al.
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the blood pressure was rising in this post-HG period. In
contrast, during volitional effort the HR response is
always associated with MPFC deactivation, as outlined
above. Therefore, the MFPC pattern of response contin-
ued to be inversely related to HR. Further, this
approach infers that the bilateral insula, and primarily
the left insula, receives barosensory information, as
clearly demonstrated in the rat.

To further assess the cortical organization associated
with baroreceptor inputs in the absence of volitional
effort or HR increases we have produced preliminary
data reflecting the impact of phenylephrine-induced
blood pressure increases (Topolovec et al., unpublished
results; Fig. 2). In this approach, cortical regions associ-
ated with mean arterial pressure included increased
activation in the bilateral insula cortices. A challenge
with this model is the reflexive bradycardia induced by
the drug-induced pressor response. Nonetheless, when
correlated with HR (bradycardia), phenylephrine infu-
sion was associated with increased activation in the
MPFC. Recall that the rise in HR with volitional exercise
correlates with deactivation within the MPFC region.
Thus, MPFC responses to volitional or passive stimuli
are consistently inversely related to HR. Together, these
data indicate that baroreceptor-based sensory signals are
directly associated with insula cortex activation and
inversely associated with MPFC activation.

Somatosensory Inputs

During volitional handgrip, there are descending neu-
ral signals from higher cortical centers that coordinate
the immediate cardiovascular (and respiratory)
responses with muscular contractions to support the
metabolic as well as blood flow and pressure needs asso-
ciated with volitional exercise (Krogh and Lindhard,
1913; Mitchell, 1990). In addition, there are sensory sig-
nals arising from muscle spindles with the onset of the
contraction. To study the isolated effect of muscle affer-
ent, Goswami et al. (2011) examined the forebrain
patterns associated with somatosensory afferent stimula-
tion achieved by submotor electrical stimulation of
forearm muscles through anesthetized skin. This
approach preferentially recruits the large and myelin-
ated muscle spindle afferent fibers (Radhakrishnan and
Sluka, 2005). This somatosensory stimulation elicited
increased activation within the thalamus, the posterior
insula and the MPFC. In addition, important deactiva-
tion of the anterior insula cortex was observed. These
observations are summarized in Fig. 3. Concurrently,
heart rate was reduced and the spectral power of high
frequency oscillations in heart rate, reflecting PNS acti-
vation, was increased. These findings indicate that
muscle sensory afferents are represented within the
insula and MPFC and subsequently affect an increase in
PNS outflow. These data provide a backdrop against
which the responses to volitional handgrip can be inter-
preted. Specifically, the MPFC is inversely related with
HR levels and directly related to high frequency power
in the heart rate variability. Thus, the combined infor-
mation suggests that the MPFC exerts important
influence over parasympathetic modulations of heart
rate.

This conclusion confirms the associative conclusions
drawn in previous reports from various laboratories

using different stimuli (Critchley, 2004; Gianaros et al.,
2004; Wong et al., 2007b; Lane et al., 2008). In contrast
to the MPFC, the posterior insula cortex is increased in
its activation levels during volitional or passive stimuli
suggesting that this BOLD response reflects a sensory
region. These observations are consistent with evidence
in rats which indicate the anatomical linkages of viscero-
sensory inputs to the insula (Oppenheimer and
Cechetto, 1990; Allen et al., 1991), as well as the cardio-
vascular outcomes of posterior insula activation
(Oppenheimer et al., 1991; Yasui et al., 1991; Butcher
and Cechetto, 1995). Finally, the anterior insula is deac-
tivated by sensory signals from muscle but not by
baroreflex afferents or top-down signals during volitional
work. The functional implications of this response have
not been studied.

These data indicate that the cortical responses to voli-
tional handgrip exercise observed with fMRI methods do,
in fact, reflect a patterned response that, in the MPFC
region, is diametrically different from that achieved by
sensory inputs. Therefore, the brain appears to handle
sensory information from skeletal muscle and barorecep-
tor afferents along similar pathways. If HR is reduced
either by increased blood pressure or muscle sensory
stimulation, the MPFC activity is increased. Because
muscle and baroreceptor sensory inputs are engaged dur-
ing 30-sec HG, it must be that the descending signals
from cortical regions associated with volitional exercise
dominate the sensory signals arising from these periph-
eral regions. The cortical pathways mediating this effect,
culminating in MPFC deactivation despite sensory
inputs that exert a net excitatory influence, remain to be
determined. Overall, the available data provide strong
support for a functional cortical network that processes
and integrates information regarding muscle activation
with cardiovascular responses.

Fig. 3. Cortical activation maps illustrating the average response (n
¼ 12) of the ventral medial prefrontal cortex (vMPFC), subgenual ante-
rior cingulate cortex (ACC), and posterior cingulate cortex (PCC) and
dorsal anterior cingulate during either submotor levels of forearm
somatosensory nerve stimulation (SSNS) or volitional handgrip exer-
cise performed at 35% of each individual’s maximal voluntary contrac-
tion strength (MVC). The noteworthy patterns of increased activation
(left panel; SSNS) and decreased activation (right panel, volitional
handgrip) are illustrated. Adapted from (Goswami et al., 2011).
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SUMMARY

Overall, our studies in conscious humans using fMRI
indicate that a set of forebrain regions are commonly
associated either directly or inversely with reflex-medi-
ated cardiovascular arousal or its depression. These
regions, the pattern of activation (increased or
decreased), and the reflexes with which they are associ-
ated (although more reflex studies could be performed)
are illustrated in Fig. 4. In our experience, these regions
represent the fundamental and reproducible cortical
regions associated with cardiovascular adjustments to
various reflex maneuvers in our experience. Further-
more, it is not uncommon to observe associations
between changes in heart rate and the hippocampus and
basal ganglia regions during baroreflex or handgrip-
induced cardiovascular arousal. The role or relationship
of these regions in the reflex cardiovascular response
also remains to be determined.

To conclude, recent studies have outlined the anatomi-
cal and functional architecture of the forebrain in
conscious humans that are associated with reflex-medi-
ated cardiovascular control. Our evidence indicates that
these regions are involved in both sensory representa-
tion of cardiovascular adjustments once they have been
made, as well as in the active modulation of efferent
neural changes that elicit the cardiovascular response.
With these observations it is tempting to allocate a net-
worked functionality to these regions although further
anatomical and experimental approaches are required to
examine this hypothesis.
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