166 research outputs found

    Bergman kernel and complex singularity exponent

    Full text link
    We give a precise estimate of the Bergman kernel for the model domain defined by ΩF={(z,w)Cn+1:ImwF(z)2>0},\Omega_F=\{(z,w)\in \mathbb{C}^{n+1}:{\rm Im}w-|F(z)|^2>0\}, where F=(f1,...,fm)F=(f_1,...,f_m) is a holomorphic map from Cn\mathbb{C}^n to Cm\mathbb{C}^m, in terms of the complex singularity exponent of FF.Comment: to appear in Science in China, a special issue dedicated to Professor Zhong Tongde's 80th birthda

    Single-cell analysis reveals regional reprogramming during adaptation to massive small bowel resection in mice

    Get PDF
    BACKGROUND & AIMS: The small intestine (SI) displays regionality in nutrient and immunological function. Following SI tissue loss (as occurs in short gut syndrome, or SGS), remaining SI must compensate, or adapt ; the capacity of SI epithelium to reprogram its regional identity has not been described. Here, we apply single-cell resolution analyses to characterize molecular changes underpinning adaptation to SGS. METHODS: Single-cell RNA sequencing was performed on epithelial cells isolated from distal SI of mice following 50% proximal small bowel resection (SBR) vs sham surgery. Single-cell profiles were clustered based on transcriptional similarity, reconstructing differentiation events from intestinal stem cells (ISCs) through to mature enterocytes. An unsupervised computational approach to score cell identity was used to quantify changes in regional (proximal vs distal) SI identity, validated using immunofluorescence, immunohistochemistry, qPCR, western blotting, and RNA-FISH. RESULTS: Uniform Manifold Approximation and Projection-based clustering and visualization revealed differentiation trajectories from ISCs to mature enterocytes in sham and SBR. Cell identity scoring demonstrated segregation of enterocytes by regional SI identity: SBR enterocytes assumed more mature proximal identities. This was associated with significant upregulation of lipid metabolism and oxidative stress gene expression, which was validated via orthogonal analyses. Observed upstream transcriptional changes suggest retinoid metabolism and proximal transcription factor Creb3l3 drive proximalization of cell identity in response to SBR. CONCLUSIONS: Adaptation to proximal SBR involves regional reprogramming of ileal enterocytes toward a proximal identity. Interventions bolstering the endogenous reprogramming capacity of SI enterocytes-conceivably by engaging the retinoid metabolism pathway-merit further investigation, as they may increase enteral feeding tolerance, and obviate intestinal failure, in SGS

    Morbid Obesity as a Risk Factor for Hospitalization and Death Due to 2009 Pandemic Influenza A(H1N1) Disease

    Get PDF
    BACKGROUND: Severe illness due to 2009 pandemic A(H1N1) infection has been reported among persons who are obese or morbidly obese. We assessed whether obesity is a risk factor for hospitalization and death due to 2009 pandemic influenza A(H1N1), independent of chronic medical conditions considered by the Advisory Committee on Immunization Practices (ACIP) to increase the risk of influenza-related complications. METHODOLOGY/PRINCIPAL FINDINGS: We used a case-cohort design to compare cases of hospitalizations and deaths from 2009 pandemic A(H1N1) influenza occurring between April-July, 2009, with a cohort of the U.S. population estimated from the 2003-2006 National Health and Nutrition Examination Survey (NHANES); pregnant women and children <2 years old were excluded. For hospitalizations, we defined categories of relative weight by body mass index (BMI, kg/m(2)); for deaths, obesity or morbid obesity was recorded on medical charts, and death certificates. Odds ratio (OR) of being in each BMI category was determined; normal weight was the reference category. Overall, 361 hospitalizations and 233 deaths included information to determine BMI category and presence of ACIP-recognized medical conditions. Among >or=20 year olds, hospitalization was associated with being morbidly obese (BMI>or=40) for individuals with ACIP-recognized chronic conditions (OR = 4.9, 95% CI 2.4-9.9) and without ACIP-recognized chronic conditions (OR = 4.7, 95%CI 1.3-17.2). Among 2-19 year olds, hospitalization was associated with being underweight (BMI<or=5(th) percentile) among those with (OR = 12.5, 95%CI 3.4-45.5) and without (OR = 5.5, 95%CI 1.3-22.5) ACIP-recognized chronic conditions. Death was not associated with BMI category among individuals 2-19 years old. Among individuals aged >or=20 years without ACIP-recognized chronic medical conditions death was associated with obesity (OR = 3.1, 95%CI: 1.5-6.6) and morbid obesity (OR = 7.6, 95%CI 2.1-27.9). CONCLUSIONS/SIGNIFICANCE: Our findings support observations that morbid obesity may be associated with hospitalization and possibly death due to 2009 pandemic H1N1 infection. These complications could be prevented by early antiviral therapy and vaccination

    Basal epithelial stem cells cross an alarmin checkpoint for postviral lung disease

    Get PDF
    Epithelial cells are charged with protection at barrier sites, but whether this normally beneficial response might sometimes become dysfunctional still needs definition. Here, we recognized a pattern of imbalance marked by basal epithelial cell growth and differentiation that replaced normal airspaces in a mouse model of progressive postviral lung disease due to the Sendai virus. Single-cell and lineage-tracing technologies identified a distinct subset of basal epithelial stem cells (basal ESCs) that extended into gas-exchange tissue to form long-term bronchiolar-alveolar remodeling regions. Moreover, this cell subset was selectively expanded by crossing a cell-growth and survival checkpoint linked to the nuclear-localized alarmin IL-33 that was independent of IL-33 receptor signaling and instead connected to autocrine chromatin accessibility. This mechanism creates an activated stem-progenitor cell lineage with potential for physiological or pathological function. Thus, conditional loss of Il33 gene function in basal epithelial cells disrupted the homeostasis of the epithelial barrier at skin and gut sites but also markedly attenuated postviral disease in the lung based on the downregulation of remodeling and inflammation. Thus, we define a basal ESC strategy to deploy innate immune machinery that appears to overshoot the primordial goal of self-defense. Our findings reveal new targets to stratify and correct chronic and often deadly postviral disease

    Automated High-Content Live Animal Drug Screening Using C. elegans Expressing the Aggregation Prone Serpin α1-antitrypsin Z

    Get PDF
    The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust assay designs and high throughput work-flows. Based on their small size, tissue transparency and ease of cultivation, the use of C. elegans should obviate many of the technical impediments associated with live animal drug screening. Moreover, their genetic tractability and accomplished record for providing insights into the molecular and cellular basis of human disease, should make C. elegans an ideal model system for in vivo drug discovery campaigns. The goal of this study was to determine whether C. elegans could be adapted to high-throughput and high-content drug screening strategies analogous to those developed for cell-based systems. Using transgenic animals expressing fluorescently-tagged proteins, we first developed a high-quality, high-throughput work-flow utilizing an automated fluorescence microscopy platform with integrated image acquisition and data analysis modules to qualitatively assess different biological processes including, growth, tissue development, cell viability and autophagy. We next adapted this technology to conduct a small molecule screen and identified compounds that altered the intracellular accumulation of the human aggregation prone mutant that causes liver disease in α1-antitrypsin deficiency. This study provides powerful validation for advancement in preclinical drug discovery campaigns by screening live C. elegans modeling α1-antitrypsin deficiency and other complex disease phenotypes on high-content imaging platforms

    Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration.

    Get PDF
    Following severe or chronic liver injury, adult ductal cells (cholangiocytes) contribute to regeneration by restoring both hepatocytes and cholangiocytes. We recently showed that ductal cells clonally expand as self-renewing liver organoids that retain their differentiation capacity into both hepatocytes and ductal cells. However, the molecular mechanisms by which adult ductal-committed cells acquire cellular plasticity, initiate organoids and regenerate the damaged tissue remain largely unknown. Here, we describe that ductal cells undergo a transient, genome-wide, remodelling of their transcriptome and epigenome during organoid initiation and in vivo following tissue damage. TET1-mediated hydroxymethylation licences differentiated ductal cells to initiate organoids and activate the regenerative programme through the transcriptional regulation of stem-cell genes and regenerative pathways including the YAP-Hippo signalling. Our results argue in favour of the remodelling of genomic methylome/hydroxymethylome landscapes as a general mechanism by which differentiated cells exit a committed state in response to tissue damage.RCUK Cancer Research UK ERC H2020 Wellcome Trus

    Chikungunya Disease: Infection-Associated Markers from the Acute to the Chronic Phase of Arbovirus-Induced Arthralgia

    Get PDF
    At the end of 2005, an outbreak of fever associated with joint pain occurred in La Réunion. The causal agent, chikungunya virus (CHIKV), has been known for 50 years and could thus be readily identified. This arbovirus is present worldwide, particularly in India, but also in Europe, with new variants returning to Africa. In humans, it causes a disease characterized by a typical acute infection, sometimes followed by persistent arthralgia and myalgia lasting months or years. Investigations in the La Réunion cohort and studies in a macaque model of chikungunya implicated monocytes-macrophages in viral persistence. In this Review, we consider the relationship between CHIKV and the immune response and discuss predictive factors for chronic arthralgia and myalgia by providing an overview of current knowledge on chikungunya pathogenesis. Comparisons of data from animal models of the acute and chronic phases of infection, and data from clinical series, provide information about the mechanisms of CHIKV infection–associated inflammation, viral persistence in monocytes-macrophages, and their link to chronic signs

    Plant hormone transporters: what we know and what we would like to know

    Full text link
    corecore