20,137 research outputs found

    Flow visualization in long neck Helmholtz resonators with grazing flow

    Get PDF
    Both oscillating and steady flows were applied to a single plexiglass resonator cavity with colored dyes injected in both the orifice and grazing flow field to record the motion of the fluid. For oscillatory flow, the instantaneous dye streamlines were similar for both the short and long-neck orifices. The orifice flow blockage appears to be independent of orifice length for a fixed amplitude of flow oscillation and magnitude of the grazing flow. The steady flow dye studies showed that the acoustic and steady flow resistances do not necessarily correspond for long neck orifices

    On the formation time scale and core masses of gas giant planets

    Full text link
    Numerical simulations show that the migration of growing planetary cores may be dominated by turbulent fluctuations in the protoplanetary disk, rather than by any mean property of the flow. We quantify the impact of this stochastic core migration on the formation time scale and core mass of giant planets at the onset of runaway gas accretion. For standard Solar Nebula conditions, the formation of Jupiter can be accelerated by almost an order of magnitude if the growing core executes a random walk with an amplitude of a few tenths of an au. A modestly reduced surface density of planetesimals allows Jupiter to form within 10 Myr, with an initial core mass below 10 Earth masses, in better agreement with observational constraints. For extrasolar planetary systems, the results suggest that core accretion could form massive planets in disks with lower metallicities, and shorter lifetimes, than the Solar Nebula.Comment: ApJL, in pres

    Differences in the Angular Dependencies of Spin- and Symmetry-Forbidden Excitation Cross Sections by Low-Energy Electron Impact Spectroscopy

    Get PDF
    Optically forbidden electronic transitions can be produced by low-energy electron impact. Recent experimental investigations of helium (1-3) have shown that the differential scattering cross sections for forbidden excitations are generally enhanced relative to those for allowed ones at low incident energies and large scattering angles. We have now observed marked differences in the angular and energy dependencies of differential cross sections for various kinds of forbidden (spin, symmetry, or both) transitions in helium at low incident energies. Such differences may well provide a basis for determining the nature of optically forbidden transitions detected by electron-impact spectroscopy in other atoms and molecules

    Towards a Comprehensive Fueling-Controlled Theory on the Growth of Massive Black Holes and Host Spheroids

    Get PDF
    We study the relation between nuclear massive black holes and their host spheroid gravitational potential. Using AMR numerical simulations, we analyze how gas is transported in the nuclear (central kpc) regions of galaxies. We study the gas fueling onto the inner accretion disk (sub-pc scale) and the star formation in a massive nuclear disk like those generally found in proto-spheroids (ULIRGs, SCUBA Galaxies). These sub-pc resolution simulation of gas fueling that is mainly depleted by star formation naturally satisfy the `M_BH - $M_virial' relation, with a scatter considerably less than the observed one. We found a generalized version of Kennicutt-Schmidt Law for starbursts is satisfied, in which the total gas depletion rate (dot{M}_gas = dot{M}_BH + dot{M}_SF) is the one that scales as M_gas/t_orbital. We also found that the `M_BH - sigma' relation is a byproduct of the `M_BH - M_virial' relation in the fueling controlled scenario.Comment: 12 pages, figures, submited to ApJ, email: [email protected]

    The Magnetic Topology of the Weak-Lined T Tauri Star V410 - A Simultaneous Temperature and Magnetic Field Inversion

    Full text link
    We present a detailed temperature and magnetic investigation of the T Tauri star V410 Tau by means of a simultaneous Doppler- and Zeeman-Doppler Imaging. Moreover we introduce a new line profile reconstruction method based on a singular value decomposition (SVD) to extract the weak polarized line profiles. One of the key features of the line profile reconstruction is that the SVD line profiles are amenable to radiative transfer modeling within our Zeeman-Doppler Imaging code iMap. The code also utilizes a new iterative regularization scheme which is independent of any additional surface constraints. To provide more stability a vital part of our inversion strategy is the inversion of both Stokes I and Stokes V profiles to simultaneously reconstruct the temperature and magnetic field surface distribution of V410 Tau. A new image-shear analysis is also implemented to allow the search for image and line profile distortions induced by a differential rotation of the star. The magnetic field structure we obtain for V410 Tau shows a good spatial correlation with the surface temperature and is dominated by a strong field within the cool polar spot. The Zeeman-Doppler maps exhibit a large-scale organization of both polarities around the polar cap in the form of a twisted bipolar structure. The magnetic field reaches a value of almost 2 kG within the polar region but smaller fields are also present down to lower latitudes. The pronounced non-axisymmetric field structure and the non-detection of a differential rotation for V410 Tau supports the idea of an underlying α2\alpha^2-type dynamo, which is predicted for weak-lined T Tauri stars.Comment: Accepted for A&A, 18 pages, 10 figure

    Macrophage-sensory neuronal interaction in HIV-1 gp120-induced neurotoxicity

    Get PDF
    Acknowledgements We thank Dr Jim Perkins of University College London for his help with the statistical analysis of our gene array data. We thank Prof. Maria Papathanasopoulos from the University of the Witwatersrand, Johannesburg, for the gift of gp120Bal.Peer reviewedPublisher PD

    Rotational Symmetry Breaking in Sodium Doped Cuprates

    Get PDF
    For reasonable parameters a hole bound to a Na^{+} acceptor in Ca_{2-x}Na_{x}CuO_{2}Cl_{2} has a doubly degenerate ground state whose components can be represented as states with even (odd) reflection symmetry around the x(y) -axes. The conductance pattern for one state is anisotropic as the tip of a tunneling microscope scans above the Cu-O-Cu bonds along the x(y)-axes. This anisotropy is pronounced at lower voltages but is reduced at higher voltages. Qualitative agreement with recent experiments leads us to propose this effect as an explanation of the broken local rotational symmetry.Comment: 10 pages, 4 figure

    Cracks Cleave Crystals

    Full text link
    The problem of finding what direction cracks should move is not completely solved. A commonly accepted way to predict crack directions is by computing the density of elastic potential energy stored well away from the crack tip, and finding a direction of crack motion to maximize the consumption of this energy. I provide here a specific case where this rule fails. The example is of a crack in a crystal. It fractures along a crystal plane, rather than in the direction normally predicted to release the most energy. Thus, a correct equation of motion for brittle cracks must take into account both energy flows that are described in conventional continuum theories and details of the environment near the tip that are not.Comment: 6 page

    Astrometric signatures of self-gravitating protoplanetary discs

    Full text link
    We use high resolution numerical simulations to study whether gravitational instabilities within circumstellar discs can produce astrometrically detectable motion of the central star. For discs with masses of M_disc = 0.1 M_star, which are permanantly stable against fragmentation, we find that the magnitude of the astrometric signal depends upon the efficiency of disc cooling. Short cooling times produce prominent filamentary spiral structures in the disc, and lead to stellar motions that are potentially observable with future high precision astrometric experiments. For a disc that is marginally unstable within radii of \~10 au, we estimate astrometric displacements of 10-100 microarcsec on decade timescales for a star at a distance of 100 pc. The predicted displacement is suppressed by a factor of several in more stable discs in which the cooling time exceeds the local dynamical time by an order of magnitude. We find that the largest contribution comes from material in the outer regions of the disc and hence, in the most pessimistic scenario, the stellar motions caused by the disc could confuse astrometric searches for low mass planets orbiting at large radii. They are, however, unlikely to present any complications in searches for embedded planets orbiting at small radii, relative to the disc size, or Jupiter mass planets or greater orbiting at large radii.Comment: 6 pages, 9 figures, accepted for publication in MNRA
    • 

    corecore