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Editor’s key points

† The mechanisms
underlying human
immunodeficiency virus
(HIV)-associated sensory
neuropathy are unclear.

† HIV glycoprotein gp120
induced delayed neurite
degeneration in cultured
rat dorsal root ganglion
cells.

† This effect was mediated
by factors released from
macrophages, and was
blocked by the C–C
chemokine receptor type
5 (CCR5) antagonist
maraviroc.

† Indirect neurotoxicity
involving a gp120–CCR5
interaction in
macrophages provides a
plausible mechanism for
HIV-induced neuropathy.

Background. Human immunodeficiency virus (HIV)-associated sensory neuropathy (SN) is the
most frequent neurological complication of HIV disease. Among the probable mechanisms
underlying HIV-SN are neurotoxicity induced by the HIV glycoprotein gp120 and
antiretroviral therapies (ART). Since HIV-SN prevalence remains high in patients who have
not been exposed to toxic ART drugs, here we focused on gp120-mediated mechanisms
underlying HIV-SN.

Methods. We hypothesized that a direct gp120–sensory neurone interaction is not the cause
of neurite degeneration; rather, an indirect interaction of gp120 with sensory neurones
involving macrophages underlies axonal degeneration. Rat dorsal root ganglion (DRG)
cultures were used to assess gp120 neurotoxicity. Rat bone marrow-derived macrophage
(BMDM) cultures and qPCR array were used to assess gp120-associated gene expression
changes.

Results. gp120 induced significant, but latent onset, neurite degeneration until 24 h after
application. gp120–neurone interaction occurred within 1 h of application in ,10% of DRG
neurones, despite neurite degeneration having a global effect. Application of culture media
from gp120-exposed BMDMs induced a significant reduction in DRG neurite outgrowth.
Furthermore, gp120 significantly increased the expression of 25 cytokine-related genes in
primary BMDMs, some of which have been implicated in other painful polyneuropathies. The
C–C chemokine receptor type 5 (CCR5) antagonist, maraviroc, concentration-dependently
inhibited gp120-induced tumour necrosis factor-a gene expression, indicating that these
effects occurred via gp120 activation of CCR5.

Conclusions. Our findings highlight macrophages in the pathogenesis of HIV-SN and upstream
modulation of macrophage response as a promising therapeutic strategy.
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Human immunodeficiency virus (HIV)-associated sensory
neuropathy (SN) is the most frequent neurological manifest-
ation of HIV disease. It is seen in �40% of patients whose
HIV infection is otherwise well controlled by antiretroviral ther-
apies (ART), and is frequently complicated by intractable
neuropathic pain.1 2 There are two major mechanisms

proposed for HIV-SN: neurotoxicity induced either by the
HIV-1 envelope glycoprotein gp1203 or by certain ART drugs.4
5 While certain ART drugs4 5 are undoubtedly neurotoxic,
HIV-SN prevalence is not lower in patients who have never
been exposed to these drugs,6 suggesting that alternative or
additional factors underlie HIV-SN.
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gp120 neurotoxicity is thought to result from its binding to
CCR5 (C–C chemokine receptor type 5), CXCR4 (C–X–C chemo-
kine receptor type 4), or both.7 Schwann cells have been sug-
gested to play a role in the pathogenesis of HIV-SN,8 but
there is no convincing evidence to suggest that they are
direct targets of HIV infection. The majority of HIV strains,
known as M-tropic viruses, preferentially target macrophages
via CCR5.9 Growing evidence suggests that macrophages
may play a role in the pathogenesis of HIV-SN. Infiltrated
macrophages were found in the dorsal root ganglia (DRG) of
AIDS patients with a history of HIV-SN.10 Simian immunodefi-
ciency virus (SIV) only infects macrophages, not neurones, in
the primate DRG, mirroring the process observed in
humans10 11 and contradicting the theory of direct gp120
neurotoxicity. Macrophage activation by SIV precedes altered
C-fibre conduction, suggesting that macrophage-mediated
damage is the initiating event in HIV-SN.11 In rats, after treat-
ment with HIV-1 gp120, the number of macrophages is signifi-
cantly increased in the ipsilateral DRG and at the site of
perineural application at the peak of mechanical hypersensi-
tivity.3 When exposed to supernatant from macrophages
infected with the M-tropic HIV-1Bal strain, cultured DRG
neurones undergo axonal degeneration.10 Macrophages
are capable of producing more than 100 different cytokines,
chemokines, and metabolites, many of which could play an
unknown but crucial role in gp120-mediated pathogenesis in
HIV-SN. However, this has remained unexplored.

The primary aim of this study was to elucidate further the
mechanism of gp120 neurotoxicity using in vitro techniques.
We hypothesized that: (i) gp120–sensory neurone interaction
is not the direct cause of neurite degeneration; (ii) gp120
causes the release of neurotoxic mediators from peripheral
macrophages that consequently lead to neurite degeneration;
and (iii) gp120 induces a pro-inflammatory profile of gene ex-
pression in macrophages via CCR5.

Methods
Reagents

Treatment compounds, culture medium components, and the
rationale for using monomeric gp120MN and gp120Bal are
detailed in Supplementary material.

Primary adult DRG culture

All experiments were approved by the Animal Welfare and
Ethical Review Committee of Imperial College London and
carried out accordingly to ARRIVE guidelines. Mixed dorsal
root neuronal–glial cell cultures were obtained from adult
female Wistar rats (150–250 g) using a previously published
protocol.12 A total of 2000 –3000 cells were plated onto
poly-L-lysine- and laminin-coated 16 mm coverslips in 500 ml
complete-Dulbecco’s Modified Eagle Medium (C-DMEM). Cul-
tures were maintained at 378C in a humidified environment
containing 5% CO2, and tested after 1 day in vitro (DIV, 24 h).
For experiments involving conditioned macrophage media
and tumour necrosis factor (TNF)-a application, dissociated
DRG cells were spun through an 11% bovine serum albumin

cushion before plating, to reduce the presence of non-neuronal
cells. Methodological details for assessing gp120-associated
neurite degeneration are available in Supplementary material.

Primary adult bone marrow-derived macrophage
culture and treatment

Primary adult bone marrow-derived macrophages (BMDMs)
were obtained from femurs and tibias of adult female Wistar
rats (150–250 g) using a previously published protocol.13 Col-
lected cells were resuspended in 50 ml macrophage complete
medium (C-IMDM), which comprised Iscove’s Modified Dulbec-
co’s Medium (IMDM), 10% fetal bovine serum and Penicillin/
Streptomycin antibodies and was further supplemented with
macrophage colony stimulating factor, then plated across
5×100 mm culture plates. Cells were maintained at 378C
with complete-Iscove’s Modified Dulbecco’s Medium (C-IMDM)
media changed after 2.5 h and 3 DIV. After 7 DIV, differentiated
macrophages were isolated and plated at 3×105 cells per 35
mm culture dish in 1 ml C-IMDM. Cells were allowed to settle
at 378C for 24 h, then media was replaced with 1 ml serum-free
IMDM for 24 h before testing. BMDM cultures were treated after
9 DIV with vehicle, denatured-gp120Bal or gp120Bal for 4 h at
378C. In experiments assessing CCR5 involvement, BMDMs
were first preincubated in the absence or presence of the
CCR5 antagonist maraviroc (1, 10, or 100 nM) for 1 h before
experimentation. Cultures were then supplemented with treat-
ment media to obtain vehicle, 1 nM denatured-gp120Bal or 1 nM
gp120Bal in 1 ml IMDM that matched pretreatment conditions.
Depending on the experiment, either mRNA was extracted to
assess gene expression or cell-free supernatant was obtained
for application to 1-day-old DRG cultures. More details are
available in Supplementary material.

Treatment with conditioned macrophage media
or TNF-a

Media of 1-day-old DRG cultures were removed and replaced
with 500 ml of the cell-free supernatant from vehicle-,
denatured-gp120Bal, or gp120Bal-treated macrophage cul-
tures, and incubated at 378C. After 24 h, DRG cultures were
fixed and immunostained with bIII-tubulin and Hoechst
32258. In a separate experiment, 1-day-old DRG cultures
were treated with vehicle (phosphate-buffered saline in
DMEM) or TNF-a (0.25, 0.5, 1, or 2 nM in DMEM) for 24 h, and
then processed for immunocytochemistry.

Temporal assessment of neurite outgrowth

Untreated 1-day-old DRG cultures were fixed at the start of the
experiment (t¼0 h) to establish baseline neurite outgrowth,
and remaining cultures were treated with either vehicle or
2 nM gp120MN. After 2, 4, 8, 16, 24, or 48 h, cultures were
washed then fixed with 4% paraformaldehyde. In another ex-
periment, untreated DRG cultures were again fixed at t¼0 h to
determine basal neurite outgrowth, after which 2 nM
B-gp120MN was applied to the remaining cultures. Treated
cultures were washed then fixed 1, 2, 3.5, 7, 10, or 24 h
post-treatment.

BJA Moss et al.

500

 at U
niversity of A

berdeen on July 21, 2015
http://bja.oxfordjournals.org/

D
ow

nloaded from
 

http://bja.oxfordjournals.org/lookup/suppl/doi:10.1093/bja/aeu311/-/DC1
http://bja.oxfordjournals.org/lookup/suppl/doi:10.1093/bja/aeu311/-/DC1
http://bja.oxfordjournals.org/lookup/suppl/doi:10.1093/bja/aeu311/-/DC1
http://bja.oxfordjournals.org/


Methods for immunocytochemistry, neurite analysis, cDNA
synthesis, reverse transcription, and qPCR are described in Sup-
plementary material.

Cytokine microarray

BMDM cultures were established as described above. Two bio-
logical replicates were performed in two independent studies
per treatment. RNA integrity was confirmed using the Eukary-
ote Total RNA Nano 6000 assay run with an Agilent 2100 Bio-
analyser (Agilent, UK). Reverse transcription was performed
using 200 ng RNA and random hexamers. Samples of cDNA
were mixed with DNAse-free water to a final volume of 100
ml then mixed 1:1 with 2× TaqManw PCR Master mix (Applied
Biosystems, UK) to give a final cDNA concentration of 1 ng
ml21. One hundred nanograms of cDNA samples (four per treat-
ment) were loaded in biological duplicate, in a randomizedorder,
onto three Applied Biosystems 384-well TaqManw microfluidic
custom-made array cards. These cards were designed using
the Applied Biosystems website (www.appliedbiosystems.com)
and measured the expression of 92 different inflammatory med-
iators, mainly cytokines and chemokines.14 Relative mRNA ex-
pression was calculated using the DDCt method and changes
shown as fold change (treatment/vehicle). Analysis was carried
out using the ReadqPCR and NormqPCR R packages.15 GAPDH
(ID: Gapdh.Rn99999916_s1), b-actin (ID: Actb.Rn00667869_
m1), Hprt1 (hypoxanthine phosphoribosyl transferase 1, ID:
Hprt1.Rn01527840_m1), and X18S (Eukaryotic 18S rRNA; ID:
X18S.Hs99999901_s1) were used as housekeeping genes.

Statistical analysis

Dataare presented as mean [standard deviation (SD)]. Unpaired
Student’s t-tests and one- and two-way analysis of variances
(ANOVAs) (SigmaStat 3.5, Systat Software, Inc., Germany)
were performed where applicable. The mean (SD) values were
calculated from identical biological replicates (independent
experiments using identical experimental conditions). Each
biological replicate was made up of at least two technical repli-
cates (within treatment samples). For qPCR array cards, statis-
tical significance was calculated by t-tests in R (two-sided,
Welch’s t test) on the DCt values. We adjusted the P-values
using the false discovery rate correction.15

Results
gp120-associated neurite degeneration: temporal
course and correlation with gp120–neuronal binding

Neurite outgrowth in gp120MN- and vehicle-treated adult DRG
cultures were similar for the first 16 h after treatment (Fig. 1J).
After 24 h, neurite outgrowth in gp120-treated cultures was
significantly less than both vehicle-treated cultures after 24 h
[mean neurite outgrowth per neurone (NOPN) (SD), gp120 24
h: 580 (260) mm vs vehicle 24 h: 1270 (308) mm; P,0.05;
Fig. 1B, C, and J], and gp120-treated cultures at the earlier 16
h time point [gp120 16 h: 102 (179) mm; P,0.05]. This was
maintained until the study end [gp120 48 h: 643 (950) mm vs
vehicle 48 h: 2600 (690) mm; P,0.05; Fig. 1D, E and J).

The temporal course of neurite degeneration was studied in
parallel to biotinylated-gp120MN (B-gp120MN) (Fig. 1F–I and K).
B-gp120MN induced a similar profile of neurite degeneration to
the unbiotinylated form, confirming that biotinylation does not
interfere with the biological activity of gp120. B-gp120MN was
detectable in a small proportion of neurones within 1 h of
application [0.2 (0.3)%; Fig. 1G], before neurite degeneration
became evident. Neuronal accumulation of B-gp120MN

peaked at 24 h [7.9 (8.7)%; Fig. 1K], when significant neurite de-
generation first became evident.

gp120-exposed BMDM-released mediators reduce
neurite outgrowth

Adult DRG cultures treated for 24 h with supernatant from
gp120Bal-conditioned BMDMs showed significantly less
neurite outgrowth relative to those treated with vehicle-
conditioned supernatant [mean NOPN relative to vehicle
(100.0%) (SD), gp120-BMDM: 78 (14)%, P,0.01; Fig. 2A–D]. In
contrast, denatured-gp120Bal BMDM media had no significant
effect on neurite outgrowth [den.gp120-BMDM: 104 (14)%,
P¼0.448; Fig. 2A, B, and D]. Furthermore, neither additional
negative control (cell-free, 24 h gp120-treated DMEM media,
and naı̈ve, cell-free, gp120-free DMEM media) caused any
changes compared with vehicle control (data not shown).
This confirms that neither the culture condition nor non-
specific effects of gp120 were responsible for the responses
seen.

After our evidence for gp120-induced, macrophage-
mediated neurotoxicity, we assessed TNF-a mRNA expression
in BMDMs using qPCR to clarify macrophage responses to
gp120. gp120Bal induced TNF-a mRNA expression in BMDMs
in a concentration-dependent manner that was significant at
concentrations of 0.2, 1, and 2 nM (65-, 415-, and 628-fold in-
crease, respectively) relative to vehicle- and denatured-gp120Bal-
treated cultures (1- and 27-fold increase, respectively; P,0.05;
Fig. 3A). No significant increase in TNF-a was noted in BMDMs
treated with denatured-gp120Bal [den.gp120 2 nM: 27 (11) fold,
P.0.05].

Using the highly selective CCR5 antagonist maraviroc, we
confirmed that gene expression changes were initiated via
specific, biologically active binding of gp120Bal to the CCR5 re-
ceptor. Preincubation and continued presence of 1 nM mara-
viroc was sufficient to significantly attenuate gp120-induced
TNF-a expression (Fig. 3B). Application of 10 and 100 nM mara-
viroc reduced TNF-a expression levels further, but neither fully
ablated the response. The plateau of inhibition reached was on
par with that seen with denatured-gp120Bal. Application of 10
nM maraviroc alone showed no induction or suppression of
TNF-a expression.

gp120 up-regulates a pro-inflammatory gene
expression profile in BMDMs

gp120Bal significantly induced the expression of 25 genes in
BMDM cultures 4 h after application (Table 1), CXCL11, interleu-
kin (IL)-27, inducible nitric oxide synthase (iNOS), IL-1a, IL-1b,
TNF-a, CCL2, and prostaglandin (PG) E synthase (3200-, 2400-,
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Fig 1 Temporal course of gp120-associated neurite degeneration and accumulation of biotinylated-gp120MN in the neuronal cell body. Untreated
cultures were fixed at the time of application (t¼0 h) to assess baseline neurite outgrowth. Remaining cultures were treated with vehicle or 2 nM
gp120MN or, in a separate experiment, 2 nM biotinylated-gp120MN (B-gp120MN) in C-DMEM. (A–I) Representative images of untreated DRG cultures
at t¼0 h (A and F) and treated DRG cultures after 24 h (B and C) or 48 h (D and E) exposure to vehicle (B and D) or 2 nM gp120MN (C and E), or those treated
with B-gp120MN after 3.5 (G), 10 (H), or 24 h (I). Treated cultures were fixed at set time-points after application, and immunostained for bIII-tubulin
(red) to complete neurite analysis. (J) Quantification of the temporal course of neurite outgrowth, and (K) its association with the temporal local-
ization of B-gp120MN with neuronal cell bodies. White arrowheads indicate neuronal cell bodies positive for B-gp120MN immunolabelling (green).
Inset shows×5.2 magnification of indicated white box. Data presented as mean and (SD). *P,0.05 and **P,0.01 vs 0 h baseline, and #P,0.05 vs the
respective baselines using two-factor ANOVA; n¼6. Percentage (%) of baseline was used to normalize across the two biological replicates. Scale
bars: (A–E) 50 mm and (F–I) 100 mm.
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2200-, 2000-, 950-, 310-, 130-, and 47-fold change relative to
vehicle, respectively). A further 12 genes showed increased ex-
pression but were not statistically significant (Supplementary
Table S2). A further eight genes showed decreased expression
that did not reach statistical significance (Supplementary Table
S2). In contrast, no expression changes with denatured-gp120-
treated BMDM samples were statistically significant.

Effect of TNF-a on DRG neurite outgrowth

DRG cultures were exposed for 24 h to vehicle or TNF-a (0.25–2
nM), using concentrations based on the CSF and plasma levels
found in HIV patients exhibiting SN.16 TNF-a induced a reduc-
tion in neurite outgrowth relative to vehicle that decreased
with increasing concentration [0.25 nM: 82% (14), 0.5 nM:
87% (12), 1 nM: 81% (29) of vehicle; P.0.05; Fig. 4] and
reached significance at 2 nM [74% (10) of vehicle; P,0.05].
We also assessed cell survivability by quantifying the propor-
tion of neurones that exhibited signs of apoptosis, by counting
condensed and fragmented Hoechst-labelled nuclei. No
significant difference was observed between vehicle-treated
cultures [45 (3.2)% neurones] and those exposed to 2 nM
TNF-a [48 (0.9)% neurones].

Discussion
We showed that direct gp120 neurotoxicity to sensory neu-
rones does not appear to be a predominant mechanism under-
lying HIV-SN, but rather macrophages are probably important
in HIV-SN pathogenesis. Thus, treatment with supernatant
from gp120-exposed BMDMs of DRG neurones reduced
neurite outgrowth. We also found 25 cytokine and chemokine
genes up-regulated in gp120-exposed BMDMs, some of which
are already known for their roles in neuropathic pain,16 further
supporting the possible involvement of macrophages in
HIV-SN pathogenesis. Finally, application of the clinically avail-
able CCR5 antagonist maraviroc attenuated TNF-a production

by gp120-exposed BMDMs, highlighting its potential for pre-
venting HIV-SN.

gp120–neuronal interaction is unlikely the direct
cause of neurite outgrowth reduction

Our experiments present for the first time the temporal profile
of gp120-associated neurotoxicity. The temporal course of
B-gp120MN binding showed an interaction with DRG neurones
within 1 h of exposure. However, the maximum proportion of
DRG neurones with evidence of B-gp120MN accumulation was
about 8% after 24 h, despite reduced neurite outgrowth in
the global population of neurones. We used 2 nM gp120 in our
experiments, a concentration in the higher range of that used
by others.7 8 17 However, in the light of a reported Kd ranging
from 4 to 300 nM for gp120 binding to CXCR4 and CCR5 in the
absence of CD4,18–20 it is more likely that the majority of these
effects were mediated via intermediary cells, such as macro-
phages, which were also present in ourcultures (Supplementary
Fig. S3). Studies on axonal degeneration are starting to draw
insight from mechanisms underlying Wallerian degeneration.21

After the introduction of the slow Wallerian degeneration
mouse mutant, it is now believed that neurite degeneration is
not a passive process but instead an active process that
becomes activated once a threshold of parameters is met. We
believe that direct gp120 neurotoxicity is unlikely to fully
explain the global extent of neurite toxicity seen in our studies.

Macrophage-released mediators reduce neurite
outgrowth

Many studies have explored the involvement of Schwann cells
in gp120-mediated neurotoxicity8 17 and of microglia in
HIV-associated dementia,22 but the effects of gp120 on per-
ipheral macrophages, and subsequent association with
neurite degeneration, have been less well covered. We found
that supernatant from BMDMs treated with gp120Bal, a

Mean neurite outgrowth
D

A

50 m

B C

Vehicle sup. Den.gp120Balsup. gp120Balsup.

100.0 (0.0) 103.9 (13.9) 78.0 (13.5)*% Vehicle (SD)

Fig 2 Neurite analysis after exposure to conditioned BMDM media. (A–C) Representative images of primary DRG cultures immunolabelled forbIII-
tubulin (green) and nuclei counterstained with Hoechst 32258 (blue). One-day-old DRG cultures were treated for 24 h with DMEM/F-12 supplemen-
ted 1:1 with culture media from BMDMs stimulated for 4 h prior with (A) vehicle, (B) 2 nM denatured-gp120Bal, or (C) 2 nM gp120Bal. Scale bars¼50mm.
DRG cultures treated with culture media from gp120Bal-treated BMDMs showed a significant reduction in the mean NOPN, as a percentage of
vehicle-treated cultures (D). Conditioned media from denatured-gp120Bal-treated BMDMs induced no change in neurite outgrowth relative to
vehicle control. Data presented as mean (SD). *P,0.05 vs vehicle-treated cultures, using one-way ANOVA and Tukey’s post hoc analysis (n¼5–6;
five to six technical replicates across two biological studies).
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CCR5-macrophage-selective gp120 strain, induced significant
neurite toxicity suggesting neurotoxic factors were secreted
by BMDMs as a result of gp120Bal exposure. With the indication
that macrophage-released mediators were neurotoxic to DRG
cultures, we performed qPCR analysis to assess changes in
TNF-a mRNA expression. Given the induced transcription of
TNF-a, along with other known algogenic mediators (IL-1b,
CCL5) in gp120-exposed BMDMs, we propose these among
the factors mediating the neurotoxicity observed. Although
we did not confirm mediator release at a protein level,
release of TNF-a, IL-1b, and CCL5 has been previously demon-
strated in gp120-stimulated macrophage cultures.23 Our data
are consistent with human data showing infiltrated macro-
phages and concomitant presence of pro-inflammatory cyto-
kines in the DRG of AIDS patients with a history of HIV-SN,10

and the extent of axonal degeneration correlated with the
level of macrophage infiltration.24

Maraviroc demonstrates potent antiviral activity against
all CCR5-tropic HIV-1 viruses tested (geometric mean 90% in-
hibitory concentration of 2 nM); its mechanism of action has
been established using cell-based assays, where it blocks
binding of gp120 to CCR5 to prevent the membrane fusion
events necessary for viral entry.25 This has led to its use as an
effective antiretroviral treatment.26 Even at the lowest concen-
tration tested (1 nM), maraviroc almost completely ablated the
gp120-induced gene expression of TNF-a. Similar effects have
been demonstrated in cultured microglia, cells that have a
similar lineage to macrophages.22 This confirms that M-tropic
gp120Bal induces mRNA changes via selective activation of
CCR5. The expression changes were not completely ablated,
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even with 100 nM maraviroc. However, the apparent pla-
teau reached matched the expression changes seen with dena-
tured-gp120Bal. Given that maraviroc alone, in the absence of
gp120, had no effect on BMDM TNF-a expression, we propose
that these low level changes are evidence of a non-specific,

CCR5-independent, antigenic macrophage response to the
denatured, but still highly glycosylated foreign glycoprotein.27

It has not yet been investigated whether maraviroc protects
against gp120-induced neurite degeneration or associated
pain, which was unfortunately outside the scope of our studies.

Table 1 Relative gene expression of selected cytokines. Mean 22DDCt-fold change (22DDCt standard range) of all gene expression profiles affected by
gp120Bal exposure (n¼4; two biological repeats with two technical replicates in each). Data from BMDMs treated with 2 nM denatured-gp120Bal or 2
nM gp120Bal in IMDM compared with the vehicle control. Values were normalized to the mean of four housekeeping genes. *P,0.05; **P,0.01;
***P,0.001; all refer to gp120-treated fold changes only. No fold changes for denatured-gp120Bal were statistically significant. D denotes cases
where expression became detectable in more than one-fourth, but ,4/4, samples and compared with samples from vehicle- and
denatured-gp120Bal-treated BMDMs where expression was generally undetectable.

Target Fold difference in den.gp120 relative to vehicle Fold difference in gp120 relative to vehicle P-value

Up-regulated

CXCL11 5.9 (1.6–22.5) 3205.5 (2241.2–4583.4) ***

IL-27 6.5 (3.8–11.3) 2446.1 (1857.3–3221.5) *

iNOS 2.0 (0.7–5.7) 2244.0 (1846–2728) ***

CXCL9 2.2 (0.9–5.2) 2082.9 (1525–2844) ***

CXCL2 10.0 (3.2–31.4) 2060.5 (1186.4–3578.6) *

IL-1a 8.9 (3.2–25.2) 2016.3 (1336–3043) ***

CCL12 12.4 (0.4–374.5) 1167.2 (1005–1355) *

IL-1b 8.6 (5.4–13.6) 948.3 (798.4–1126) ***

CXCL10 5.1 (2.2–11.4) 939.9 (737.5–1198) ***

CCL5/RANTES 0.8 (0.2–3.1) 474.5 (342.2–657.9) **

TNF-a 2.4 (0.7–8.6) 313.7 (199.1–494.3) ***

CCL4 2.5 (1.0–6.2) 306.3 (205.7–456.1) **

CCL20 1.7 (0.7–3.8) 276.6 (133.9–571.6) ***

CXCL1 3.9 (2.2–6.9) 248.0 (198.5–309.9) ***

CCL2 2.1 (1.0–4.4) 134.8 (107.9–168.4) ***

CCL3 1.4 (0.2–9.0) 127.1 (53.9–299.9) **

CCL7 1.4 (0.8–2.5) 93.4 (81.8–106.6) ***

COX2 0.3 (0.1–0.9) 57.2 (43.1–76.0)

PGES 1.1 (0.2–6.4) 46.8 (15.4–142.2) *

IL-15 1.4 (0.7–2.8) 43.1 (30.1–61.7) **

CX3CL1 1.6 (0.9–2.8) 41.4 (22.8–75.1) ***

LIF 1.4 (0.3–5.9) 23.0 (21.6–24.5)

CXCL6 2.0 (0.8–4.7) 20.6 (5.3–80.9) *

IL-6 1.3 (0.07–23.5) 18.6 (1.3–266.0)

CCL19 0.8 (0.6–1.1) 14.0 (8.7–22.5) **

CCL9 1.08 (0.4–2.2) 7.5 (4.3–13.0) *

Ereg 1.3 (0.5–3.3) 6.5 (3.6–11.7)

IL-12a No change 4.6 (1.1–19.5)

CXCL13 0.9 (0.5–1.7) 3.2 (1.2–8.2)

Edn1 0.9 (0.5–1.5) 3.1 (2.0–4.9)

M-CSF1 1.2 (0.9–1.6) 2.9 (1.9–4.4) *

IL-18 1.3 (0.6–2.6) 2.9 (1.9–4.3)

CXCL16 1.1 (0.7–1.7) 2.3 (1.8–2.9) *

IL-12b No change (0/4 detected) Increase [2/4 m¼33.6 (0.1)] D

Csf2 No change (0/4 detected) Increase [2/4 m¼33.8 (0.1)] D

IL-23a No change (0/4 detected) Increase [2/4 m¼33.8 (0.5)] D

CCL17 Increase (1/4 34.91) Increase [2/4 m¼34.7 (0.6)] D

Down-regulated

Kitlg 0.8 (0.2–2.9) 0.2 (0.1–0.5)

Artn 0.3 (0.2–0.4) 0.3 (0.2–0.4)
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Cytokine/chemokine up-regulation in gp120-exposed
macrophages

Our study is the first to assess changes to a selection of genes
known for their roles in inflammation, immune responses,
and HIV-SN in peripheral macrophages. Among the 95
genes assessed, those extensively induced by gp120Bal were
CXCL11, CXCL9, and CXCL10, IL-27, and iNOS, a profile
typical of an M1 pro-inflammatory macrophage response,28

and also IL-1a, IL-1b, TNF-a, CCL2, and PG E synthase,
which have all been shown to play a key role in neuro-
degeneration and pain.29 – 31 Our data suggest the release
of end products of these genes when up-regulated in
gp120-exposed BMDMs, which supports reports of M1 pheno-
typic states being neurotoxic to cortical neuronal cultures,
while M2 are neuroprotective.32 Some key functions of
up-regulated genes are: (i) IL-18, 21, 27, and 32 cytokines
and CXCL9–11 and CCL2 chemokines have potent effects on
lymphocyte trafficking allowing further immune cell recruit-
ment;30 33 (ii) IL-1a and 1b cytokines are associated with
neurotoxicity via microglia and macrophages34 and with neur-
onal sensitization and hyperalgesia;35 (iii) iNOS produces nitric
oxide that can cause deleterious effects on neighbouring cells;
(iv) COX-2 is a macrophage-derived enzyme and together with

PGE is implicated in many neurodegenerative diseases and
HIV infection.36 37

In summary, we have shown the key involvement of
macrophages in gp120-induced neurotoxicity in vitro. It is
likely that the interaction between macrophages and the
peripheral nervous system, which could happen at an early
stage of HIV infection when the viral load is high, the
immune response is robust, and ART is not yet initiated, is
important in the development of HIV-SN. Our study presents
a plausible therapeutic strategy for gp120-induced neuro-
toxicity by blocking the upstream interaction of gp120 with
macrophages expressing CCR5. Future experiments will
explore the therapeutic potential of maraviroc in vitro to
prevent axonal degeneration and in vivo to prevent neuropathy
in rodent models and in SIV-infected non-human primates,
and also in clinical studies to follow up patients treated with
maraviroc and see if they develop symptoms and signs of
neuropathy.

Supplementary material
Supplementary material is available at British Journal of Anaes-
thesia online.
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Fig 4 Effect of TNF-aon neurite outgrowth in primary adult DRG cultures. Representative images of adult primary DRG cultures treated for 24 h with
vehicle (A) or 0.25 nM (B), 0.5 nM (C), 1 nM (D), and 2 nM (E) TNF-a in C-DMEM. Addition of TNF-a induced reduced neurite outgrowth that was significant
at 2 nM (F). Data presented as mean neurite outgrowth/neurone (SD), after 24 h treatment, normalized to (percentage of) the mean neurite out-
growth/neurone of vehicle-treated cultures (n¼3–9). *P,0.05 using one-way ANOVA and Tukey’s post hoc analysis. Scale bars¼50 mm.
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