10,376 research outputs found

    Phase Mixing of Alfvén Waves Near a 2D Magnetic Null Point

    Get PDF
    The propagation of linear Alfvén wave pulses in an inhomogeneous plasma near a 2D coronal null point is investigated. When a uniform plasma density is considered, it is seen that an initially planar Alfvén wavefront remains planar, despite the varying equilibrium Alfvén speed, and that all the wave collects at the separatrices. Thus, in the non-ideal case, these Alfvénic disturbances preferentially dissipate their energy at these locations. For a non-uniform equilibrium density, it is found that the Alfvén wavefront is significantly distorted away from the initially planar geometry, inviting the possibility of dissipation due to phase mixing. Despite this however, we conclude that for the Alfvén wave, current density accumulation and preferential heating still primarily occur at the separatrices, even when an extremely non-uniform density profile is considered

    Induced antiferromagnetism and large magnetoresistances in RuSr2(Nd,Y,Ce)2Cu2O10-d ruthenocuprates

    Get PDF
    RuSr2(Nd,Y,Ce)2Cu2O10-d ruthenocuprates have been studied by neutron diffraction, magnetotransport and magnetisation measurements and the electronic phase diagram is reported. Separate Ru and Cu spin ordering transitions are observed, with spontaneous Cu antiferromagnetic order for low hole doping levels p, and a distinct, induced-antiferromagnetic Cu spin phase in the 0.02 < p < 0.06 pseudogap region. This ordering gives rise to large negative magnetoresistances which vary systematically with p in the RuSr2Nd1.8-xY0.2CexCu2O10-d series. A collapse of the magnetoresistance (MR) and magnetisation in the pre-superconducting region may signify the onset of superconducting fluctuations.Comment: 22 pages, 11 figure

    Selenate-enriched urea granules are a highly effective fertilizer for selenium biofortification of paddy rice grain

    Get PDF
    Citation: Premarathna, Lakmalie, Mike J. McLaughlin, Jason K. Kirby, Ganga M. Hettiarachchi, Samuel Stacey, and David J. Chittleborough. “Selenate-Enriched Urea Granules Are a Highly Effective Fertilizer for Selenium Biofortification of Paddy Rice Grain.” Journal of Agricultural and Food Chemistry 60, no. 23 (June 13, 2012): 6037–44. https://doi.org/10.1021/jf3005788.We examined the effects of applied selenium (Se) species, time of application, method of application and soil water management regime on accumulation of Se in rice plants. Plants were grown to maturity in a temperature- and humidity-controlled growth chamber using three water management methods: field capacity (FC), submerged until harvest, and submerged and drained two weeks before harvest; two Se species: selenate (SeO[subscript 4] ˉ²) and selenite (SeO[subscript 3]ˉ²) applied at a rate equivalent to 30 g haˉ¹; and four application methods: i) Se applied at soil preparation, ii) Se-enriched urea granules applied to floodwater at heading iii) foliar Se applied at heading and iv) fluid fertilizer Se applied to soil or floodwater at heading. Total Se concentrations in rice grains, husks, leaves, culms and roots were measured, as well as Se speciation in grains from the Se-enriched urea granule treatment. Highest Se concentrations in the grain occurred with SeO[subscript 4] ˉ² and with fertilizer applied at heading stage; SeO[subscript 4]ˉ²-enriched urea granules applied at heading increased grain Se concentrations 5 to 6 fold (by 450-600 μg kgˉ¹) compared to the control (no fertilizer Se applied) in all water treatments. Under paddy conditions other Se fertilization strategies were much less effective. Drainage before harvesting caused Se to accumulate in/on rice roots, possibly through adsorption onto iron plaque on roots. Rice grains contained Se mainly in the organic form as selenomethionine (SeM) which comprised over 90 % of the total grain Se in treatments fertilized with SeO[subscript 4]ˉ² -enriched urea granules. The results of this study clearly show of the fertilizer strategies tested that biofortification of Se in rice grains can best be achieved in lowland rice by broadcast application of SeO[subscript 4]ˉ² -enriched urea granules to floodwater at heading stage
    corecore