26,984 research outputs found

    Optical surface damage from reentrant gases on STS

    Get PDF
    The effect of an ammonia environment on the spectral reflectance of certain optical surfaces in the vacuum ultraviolet region was studied. In particular, the optical surfaces in the space shuttle were considered. Scans made of sample beams showed no change in the relative intensities before or after exposure to ammonia. Ammonia showed no effect on the Al/MgF2 mirror reflectance in the vacuum ultraviolet

    Optical grating analyzer studies

    Get PDF
    A spectrometer was specifically designed and developed to observe grating spectra over a range of incidence angles from normal to almost grazing incidence. A unique scanning and focusing mechanism is utilized to keep the exit slit on the Rowland circle. Polarization effects in the vacuum were investigated, and efficiency measurements and spectral scans were made simultaneously with the spectrometer. Results of measurements are given. Applications of the spectrometer to the space program and to the study of contamination on optical surfaces are indicated

    Orbifold Reduction Of The Quark-Lepton Symmetric Model

    Full text link
    We investigate the quark-lepton symmetric gauge group in five dimensions, with the gauge symmetry broken by a combination of orbifold compactification of the extra dimension and the Higgs mechanism. The gauge sector of the model is investigated and contrasted with the four dimensional case. We obtain lower bounds on the mass of the exotic gauge bosons, the inverse compactification scale and the exotic leptons. Light neutrinos are obtained without requiring any scale larger than a TeV. However an ultra-violet cut-off of order 101110^{11} GeV is required to suppress proton decay inducing non-renormalizable operators.Comment: References added to match PRD versio

    Thermodynamic constraints on the amplitude of quantum oscillations

    Full text link
    Magneto-quantum oscillation experiments in high temperature superconductors show a strong thermally-induced suppression of the oscillation amplitude approaching critical dopings---in support of a quantum critical origin of their phase diagrams. We suggest that, in addition to a thermodynamic mass enhancement, these experiments may directly indicate the increasing role of quantum fluctuations that suppress the oscillation amplitude through inelastic scattering. We show that the traditional theoretical approaches beyond Lifshitz-Kosevich to calculate the oscillation amplitude in correlated metals result in a contradiction with the third law of thermodynamics and suggest a way to rectify this problem.Comment: PRB Rapid commun. (2017

    Suppressing Proton Decay By Separating Quarks And Leptons

    Get PDF
    Arkani-Hamed and Schmaltz (AS) have shown that proton stability need not originate from symmetries in a high energy theory. Instead the proton decay rate is suppressed if quarks and leptons are spatially separated in a compact extra dimension. This separation may be achieved by coupling five dimensional fermions to a bulk scalar field with a non-trivial vacuum profile and requires relationships between the associated quark and lepton Yukawa couplings. We hypothesise that these relationships are the manifestation of an underlying symmetry. We further show that the AS proposal may suggest that proton stability \emph{is} the result of an underlying symmetry, though not necessarily the traditional baryon number symmetry.Comment: 4 pages, references added to match published versio
    corecore