7,800 research outputs found
Oxytocin at physiological concentrations evokes adrenocorticotropin (ACTH) release from corticotrophs by increasing intracellular free calcium mobilized mainly from intracellular stores. Oxytocin displays synergistic or additive effects on ACTH-releasing factor or arginine vasopressin-induced ACTH secretion, respectively
The potency of oxytocin (OT) in evoking ACTH secretion by isolated, superfused rat adenohypophyseal corticotrophs and its enhancement by CRF and arginine vasopressin (AVP) were analyzed. Each secretagogue effectively released ACTH from adenohypophyseal cells when added separately in pulsatile fashion in physiological concentrations based on hypophyseal portal blood (OT, 10 nM; AVP, 0.5 nM; CRF, 0.1 nM). OT released ACTH at concentrations as low as 1 nM. Moreover, a dose- response relationship up to 10 microM was revealed. Combinations of a constant amount of CRF (0.1 nM) with increasing concentrations of OT exerted a synergistic effect on ACTH release. In contrast, OT given in various concentrations in combination with AVP (0.5 nM) produced an additive effect on ACTH release. To study the mechanism of action of OT on ACTH secretion, cytosolic free calcium levels in single pituitary cells exposed to OT or AVP were measured using the calcium-sensitive fluorescent indicator Fura-2. Corticotrophs among mixed adenohypophyseal cell types in the primary cultures were identified by immunocytochemistry. More than 500 cells were individually stimulated with OT or AVP. Basal cytosolic free calcium levels ranged between 80- 130 nM free calcium. The addition of 100 nM OT or 1 microM AVP increased the cytosolic free calcium concentration within 3 sec to values ranging from 500-800 nM. An increase in intracellular calcium ranging from 200-500 nM due to OT could still be observed after extracellular calcium depletion. Taken together, our data demonstrate that physiological concentrations of OT stimulate ACTH secretion, independent of the other ACTH secretagogues, by mobilizing calcium mainly from intracellular stores
The dimpling in the CuO_2 planes of YBa_2Cu_3O_x (x=6.806-6.984, T=20-300 K) measured by yttrium EXAFS
The dimpling of the CuO_2 planes (spacing between the O2,3 and Cu2 layers) in
YBa_2Cu_3O_x has been measured as a function of oxygen concentration and
temperature by yttrium x-ray extended-fine-structure spectroscopy (EXAFS). The
relative variations of the dimpling with doping (x=6.806-6.984) and temperature
(20-300 K) are weak (within 0.05 AA), and arise mainly from displacements of
the Cu2 atoms off the O2,3 plane towards Ba. The dimpling appears to be
connected with the transition from the underdoped to the overdoped regimes at
x=6.95, and with a characteristic temperature in the normal state, T*=150 K.Comment: 6 pages, 2 ps figs, LaTEX, Elsevier Elsart styl
The Beneficial Impact of Sorting Heavy Cattle at Re-Implant
This research examined a simple sorting strategy to reduce the prevalence of heavyweight carcass discounts. Cattle that were identified and sorted off at re-implant had a reduced prevalence of heavyweight carcasses versus unsorted cattle. Re-implant sorting was profitable at pen average in-weights of 800 pounds or less.cattle, fed cattle marketing, cattle sorting, formula marketing, Farm Management, Livestock Production/Industries, Marketing, Q11, Q16, M31,
Magnetic excitations in the metallic single-layer Ruthenates Ca(2-x)Sr(x)RuO(4) studied by inelastic neutron scattering
By inelastic neutron scattering, we have analyzed the magnetic correlations
in the paramagnetic metallic region of the series Ca(2-x)Sr(x)RuO(4),
0.2<=x<=0.62. We find different contributions that correspond to 2D
ferromagnetic fluctuations and to fluctuations at incommensurate wave vectors
(0.11,0,0), (0.26,0,0) and (0.3,0.3,0). These components constitute the
measured response as function of the Sr-concentration x, of the magnetic field
and of the temperature. A generic model is applicable to metallic
Ca(2-x)Sr(x)RuO(4) close to the Mott transition, in spite of their strongly
varying physical properties. The amplitude, characteristic energy and width of
the incommensurate components vary only little as function of x, but the
ferromagnetic component depends sensitively on concentration, temperature and
magnetic field. While ferromagnetic fluctuations are very strong in
Ca1.38Sr0.62RuO4 with a low characteristic energy of 0.2 meV at T=1.5 K, they
are strongly suppressed in Ca1.8Sr0.2RuO4, but reappear upon the application of
a magnetic field and form a magnon mode above the metamagnetic transition. The
inelastic neutron scattering results document how the competition between
ferromagnetic and incommensurate antiferromagnetic instabilities governs the
physics of this system
Long-Distance Contributions to D^0-D^0bar Mixing Parameters
Long-distance contributions to the - mixing parameters and
are evaluated using latest data on hadronic decays. In particular, we
take on two-body and decays to evaluate the contributions of
two-body intermediate states because they account for of hadronic
decays. Use of the diagrammatic approach has been made to estimate
yet-observed decay modes. We find that is of order a few
and of order from hadronic and modes. These are in good
agreement with the latest direct measurement of - mixing
parameters using the and decays by
BaBar. We estimate the contribution to from the modes using the
factorization model and comment on the single-particle resonance effects and
contributions from other two-body modes involving even-parity states.Comment: 18 pages and 1 figure; footnotes and references added; to appear in
Phys. Rev.
Microscopic theory of quadrupolar ordering in TmTe
We have calculated the crystal electric field of TmTe (T>T_Q) and have
obtained that the ground state of a Tm 4f hole is the doublet in
agreement with Mossbauer experiments. We study the quadrupole interactions
arising from quantum transitions of 4f holes of Tm. An effective attraction is
found at the L point of the Brillouin zone, . Assuming that the
quadrupolar condensation involves a single arm of we show that
there are two variants for quadrupole ordering which are described by the space
groups C2/c and C2/m. The Landau free energy is derived in mean-field theory.
The phase transition is of second order. The corresponding quadrupole order
parameters are combinations of and components. The obtained
domain structure is in agreement with observations from neutron diffraction
studies for TmTe. Calculated lattice distortions are found to be different for
the two variants of quadrupole ordering. We suggest to measure lattice
displacements in order to discriminate between those two structures.Comment: 10 pages, 2 figures, 5 tables; accepted by PR
The Extended Shapes of Galactic Satellites
We are exploring the extended stellar distributions of Galactic satellite
galaxies and globular clusters. For seven objects studied thus far, the
observed profile departs from a King function at large r, revealing a ``break
population'' of stars. In our sample, the relative density of the ``break''
correlates to the inferred M/L of these objects. We discuss opposing hypotheses
for this trend: (1) Higher M/L objects harbor more extended dark matter halos
that support secondary, bound, stellar ``halos''. (2) The extended populations
around dwarf spheroidals (and some clusters) consist of unbound, extratidal
debris from their parent objects, which are undergoing various degrees of tidal
disruption. In this scenario, higher M/L ratios reflect higher degrees of
virial non-equilibrium in the parent objects, thus invalidating a precept
underlying the use of core radial velocities to obtain masses.Comment: 8 pages, including 2 figures Yale Cosmology Workshop: The Shapes of
Galaxies and Their Halo
Antiferroquadrupolar Order in the Magnetic Semiconductor TmTe
The physical properties of the antiferroquadrupolar state occurring in TmTe
below TQ=1.8 K have been studied using neutron diffraction in applied magnetic
fields. A field-induced antiferromagnetic component k = (1/2,1/2,1/2) is
observed and, from its magnitude and direction for different orientations of H,
an O(2,2) quadrupole order parameter is inferred. Measurements below TN ~= 0.5
K reveal that the magnetic structure is canted, in agreement with theoretical
predictions for in-plane antiferromagnetism. Complex domain repopulation
effects occur when the field is increased in the ordered phases, with
discontinuities in the superstructure peak intensities above 4 T.Comment: 6 pages, 6 figures, Presented at the International Conference on
Strongly Correlated Electrons with Orbital Degrees of Freedom (ORBITAL 2001),
September 11-14, 2001 (Sendai, JAPAN). To appear in: Journal of the Physical
Society of Japan (2002
Tkachenko waves, glitches and precession in neutron star
Here I discuss possible relations between free precession of neutron stars,
Tkachenko waves inside them and glitches. I note that the proposed precession
period of the isolated neutron star RX J0720.4-3125 (Haberl et al. 2006) is
consistent with the period of Tkachenko waves for the spin period 8.4s. Based
on a possible observation of a glitch in RX J0720.4-3125 (van Kerkwijk et al.
2007), I propose a simple model, in which long period precession is powered by
Tkachenko waves generated by a glitch. The period of free precession,
determined by a NS oblateness, should be equal to the standing Tkachenko wave
period for effective energy transfer from the standing wave to the precession
motion. A similar scenario can be applicable also in the case of the PSR
B1828-11.Comment: 6 pages, no figures, accepted to Ap&S
Correlated decay of triplet excitations in the Shastry-Sutherland compound SrCu(BO)
The temperature dependence of the gapped triplet excitations (triplons) in
the 2D Shastry-Sutherland quantum magnet SrCu(BO) is studied by
means of inelastic neutron scattering. The excitation amplitude rapidly
decreases as a function of temperature while the integrated spectral weight can
be explained by an isolated dimer model up to 10~K. Analyzing this anomalous
spectral line-shape in terms of damped harmonic oscillators shows that the
observed damping is due to a two-component process: one component remains sharp
and resolution limited while the second broadens. We explain the underlying
mechanism through a simple yet quantitatively accurate model of correlated
decay of triplons: an excited triplon is long-lived if no thermally populated
triplons are near-by but decays quickly if there are. The phenomenon is a
direct consequence of frustration induced triplon localization in the
Shastry--Sutherland lattice.Comment: 5 pages, 4 figure
- âŠ