51,683 research outputs found

    Transfer of BECs through discrete breathers in an optical lattice

    Full text link
    We study the stability of a stationary discrete breather (DB) on a nonlinear trimer in the framework of the discrete nonlinear Schr\"odinger equation (DNLS). In previous theoretical investigations of the dynamics of Bose-Einstein condensates in leaking optical lattices, collisions between a DB and a lattice excitation, e.g. a moving breather (MB) or phonon, were studied. These collisions lead to the transmission of a fraction of the incident (atomic) norm of the MB through the DB, while the DB can be shifted in the direction of the incident lattice excitation. Here we show that there exists a total energy threshold of the trimer, above which the lattice excitation can trigger the destabilization of the DB and that this is the mechanism leading to the movement of the DB. Furthermore, we give an analytic estimate of upper bound to the norm that is transmitted through the DB. Our analysis explains the results of the earlier numerical studies and may help to clarify functional operations with BECs in optical lattices such as blocking and filtering coherent (atomic) beams.Comment: 8 pages, 5 figure

    Single top production and decay at next-to-leading order

    Full text link
    We present the results of a next-to-leading order analysis of single top production including the decay of the top quark. Radiative effects are included both in the production and decay stages, using a general subtraction method. This calculation gives a good treatment of the jet activity associated with single top production. We perform an analysis of the single top search at the Tevatron, including a consideration of the main backgrounds, many of which are also calculated at next-to-leading order.Comment: 35 pages + 15 figures, revtex

    Production of a Z boson and two jets with one heavy-quark tag

    Get PDF
    We present a next-to-leading-order calculation of the production of a Z boson with two jets, one or more of which contains a heavy quark (Q=c,b). We show that the cross section with only one heavy-quark jet is larger than that with two heavy-quark jets at both the Fermilab Tevatron and the CERN LHC. These processes are the dominant irreducible backgrounds to a Higgs boson produced in association with a Z boson, followed by h->bb. Our calculation makes use of a heavy-quark distribution function, which resums collinear logarithms and makes the next-to-leading-order calculation tractable.Comment: 11 pages, 5 figures. Erratum adde

    Optimization of a Non-traditional Unsupervised Classification Approach for Land Cover Analysis

    Get PDF
    The conditions under which a hybrid of clustering and canonical analysis for image classification produce optimum results were analyzed. The approach involves generation of classes by clustering for input to canonical analysis. The importance of the number of clusters input and the effect of other parameters of the clustering algorithm (ISOCLS) were examined. The approach derives its final result by clustering the canonically transformed data. Therefore the importance of number of clusters requested in this final stage was also examined. The effect of these variables were studied in terms of the average separability (as measured by transformed divergence) of the final clusters, the transformation matrices resulting from different numbers of input classes, and the accuracy of the final classifications. The research was performed with LANDSAT MSS data over the Hazleton/Berwick Pennsylvania area. Final classifications were compared pixel by pixel with an existing geographic information system to provide an indication of their accuracy

    Global Phase Space of Coherence and Entanglement in a double-well BEC

    Full text link
    Ultracold atoms provide an ideal system for the realization of quantum technologies, but also for the study of fundamental physical questions such as the emergence of decoherence and classicality in quantum many-body systems. Here, we study the global structure of the quantum dynamics of bosonic atoms in a double-well trap and analyze the conditions for the generation of many-particle entanglement and spin squeezing which have important applications in quantum metrology. We show how the quantum dynamics is determined by the phase space structure of the associated mean-field system and where true quantum features arise beyond this `classical' approximation
    • …
    corecore