9,740 research outputs found

    The Elusive p-air Cross Section

    Full text link
    For the \pbar p and pppp systems, we have used all of the extensive data of the Particle Data Group[K. Hagiwara {\em et al.} (Particle Data Group), Phys. Rev. D 66, 010001 (2002).]. We then subject these data to a screening process, the ``Sieve'' algorithm[M. M. Block, physics/0506010.], in order to eliminate ``outliers'' that can skew a χ2\chi^2 fit. With the ``Sieve'' algorithm, a robust fit using a Lorentzian distribution is first made to all of the data to sieve out abnormally high \delchi, the individual ith^{\rm th} point's contribution to the total χ2\chi^2. The χ2\chi^2 fits are then made to the sieved data. We demonstrate that we cleanly discriminate between asymptotic lns\ln s and ln2s\ln^2s behavior of total hadronic cross sections when we require that these amplitudes {\em also} describe, on average, low energy data dominated by resonances. We simultaneously fit real analytic amplitudes to the ``sieved'' high energy measurements of pˉp\bar p p and pppp total cross sections and ρ\rho-values for s6\sqrt s\ge 6 GeV, while requiring that their asymptotic fits smoothly join the the σpˉp\sigma_{\bar p p} and σpp\sigma_{pp} total cross sections at s=\sqrt s=4.0 GeV--again {\em both} in magnitude and slope. Our results strongly favor a high energy ln2s\ln^2s fit, basically excluding a lns\ln s fit. Finally, we make a screened Glauber fit for the p-air cross section, using as input our precisely-determined pppp cross sections at cosmic ray energies.Comment: 15 pages, 6 figures, 2 table,Paper delivered at c2cr2005 Conference, Prague, September 7-13, 2005. Fig. 2 was missing from V1. V3 fixes all figure

    Spiral imaging: A critical appraisal

    Get PDF

    Analytic models and forward scattering from accelerator to cosmic-ray energies

    Full text link
    Analytic models for hadron-hadron scattering are characterized by analytical parametrizations for the forward amplitudes and the use of dispersion relation techniques to study the total cross section σtot\sigma_{tot} and the ρ\rho parameter. In this paper we investigate four aspects related to the application of the model to pppp and pˉp\bar{p}p scattering, from accelerator to cosmic-ray energies: 1) the effect of different estimations for σtot\sigma_{tot} from cosmic-ray experiments; 2) the differences between individual and global (simultaneous) fits to σtot\sigma_{tot} and ρ\rho; 3) the role of the subtraction constant in the dispersion relations; 4) the effect of distinct asymptotic inputs from different analytic models. This is done by using as a framework the single Pomeron and the maximal Odderon parametrizations for the total cross section. Our main conclusions are the following: 1) Despite the small influence from different cosmic-ray estimations, the results allow us to extract an upper bound for the soft pomeron intercept: 1+ϵ=1.0941 + \epsilon = 1.094; 2) although global fits present good statistical results, in general, this procedure constrains the rise of σtot\sigma_{tot}; 3) the subtraction constant as a free parameter affects the fit results at both low and high energies; 4) independently of the cosmic-ray information used and the subtraction constant, global fits with the odderon parametrization predict that, above s70\sqrt s \approx 70 GeV, ρpp(s)\rho_{pp}(s) becomes greater than ρpˉp(s)\rho_{\bar{p}p}(s), and this result is in complete agreement with all the data presently available. In particular, we infer ρpp=0.134±0.005\rho_{pp} = 0.134 \pm 0.005 at s=200\sqrt s = 200 GeV and 0.151±0.0070.151 \pm 0.007 at 500 GeV (BNL RHIC energies).Comment: 16 pages, 7 figures, aps-revtex, wording changes, corrected typos, to appear in Physical Review

    Dust penetrated morphology in the high redshift Universe

    Full text link
    Images from the Hubble Deep Field (HDF) North and South show a large percentage of dusty, high redshift galaxies whose appearance falls outside traditional classification systems. The nature of these objects is not yet fully understood. Since the HDF preferentially samples restframe UV light, HDF morphologies are not dust or `mask' penetrated. The appearance of high redshift galaxies at near-infrared restframes remains a challenge for the New Millennium. The Next Generation Space Telescope (NGST) could routinely provide us with such images. In this contribution, we quantitatively determine the dust-penetrated structures of high redshift galaxies such as NGC 922 in their near-infrared restframes. We show that such optically peculiar objects may readily be classified using the dust penetrated z ~ 0 templates of Block and Puerari (1999) and Buta and Block (2001).Comment: 4 pages, 2 figures. Presented at the conference "The Link between Stars and Cosmology", 26-30 March, 2001, Puerto Vallarta, Mexico. To be published by Kluwer, eds. M. Chavez, A. Bressan, A. Buzzoni, and D. Mayya. High-resolution version of Figure 2 can be found at http://www.inaoep.mx/~puerari/conf_puertovallart

    New physics, the cosmic ray spectrum knee, and pppp cross section measurements

    Full text link
    We explore the possibility that a new physics interaction can provide an explanation for the knee just above 10610^6 GeV in the cosmic ray spectrum. We model the new physics modifications to the total proton-proton cross section with an incoherent term that allows for missing energy above the scale of new physics. We add the constraint that the new physics must also be consistent with published pppp cross section measurements, using cosmic ray observations, an order of magnitude and more above the knee. We find that the rise in cross section required at energies above the knee is radical. The increase in cross section suggests that it may be more appropriate to treat the scattering process in the black disc limit at such high energies. In this case there may be no clean separation between the standard model and new physics contributions to the total cross section. We model the missing energy in this limit and find a good fit to the Tibet III cosmic ray flux data. We comment on testing the new physics proposal for the cosmic ray knee at the Large Hadron Collider.Comment: 17 pages, 4 figure
    corecore