128 research outputs found

    Cholinergic modulation of epileptiform activity in the developing rat neocortex

    Get PDF
    The effects of carbachol on picrotoxin-induced epileptiform activity and membrane properties of neurons in the developing rat neocortex were examined in an in vitro slice preparation. Intracellular recordings were obtained in layer II–III neurons of slices prepared from rats 9–21 days of age. Epileptiform activity in 9- to 14-day-olds consisted of a sharply rising, sustained (10–30 s) membrane depolarization with superimposed action potentials. Bath application of carbachol (5–50 μM) raised the threshold for evoking epileptiform activity but, when such responses were evoked, their underlying depolarizations were increased in amplitude. Orthodromic stimulation in slices from 15- to 21-day-old animals evoked a prolonged epileptiform burst response that triggered an episode of spreading depression (SD). Carbachol reduced epileptiform responses and suppressed the occurrence of SD. It did not significantly affect the resting membrane potential or the height of the action potential but decreased the rheobase current needed to evoke an action potential and increased the input resistance. All effects of carbachol were antagonized by atropine (1 μM). These results indicate that carbachol has both pre- and postsynaptic effects in the developing neocortex and can significantly modulate neuronal excitability in the immature nervous system

    Influence of barium on rectification in rat neocortical neurons

    Get PDF
    The effect of low concentrations of barium on the membrane properties of rat neocortical neurons was studied in vitro. Potassium currents were examined using single-electrode current- and voltage-clamp techniques. Neurons responded to bath application of barium (10–100 μM) with a membrane depolarization associated with an increase in input resistance. Under voltage clamp conditions, an inward shift in holding current was observed. The effects of barium were rapidly reversible upon washing and persisted in the presence of TTX. The equilibrium potential for the barium-induced inward current was near −110 mV, suggesting that barium inhibited a tonically active potassium conductance. Measurements of current voltage relationships indicated an inward rectification of this conductance between −50 and −130 mV. These results provide strong evidence that barium blocks a persistent potassium ‘leak’ current in neocortical neurons that contributes to the resting potential of these cells

    Onset dynamics of type A botulinum neurotoxin-induced paralysis

    Get PDF
    Experimental studies have demonstrated that botulinum neurotoxin serotype A (BoNT/A) causes flaccid paralysis by a multi-step mechanism. Following its binding to specific receptors at peripheral cholinergic nerve endings, BoNT/A is internalized by receptor-mediated endocytosis. Subsequently its zinc-dependent catalytic domain translocates into the neuroplasm where it cleaves a vesicle-docking protein, SNAP-25, to block neurally evoked cholinergic neurotransmission. We tested the hypothesis that mathematical models having a minimal number of reactions and reactants can simulate published data concerning the onset of paralysis of skeletal muscles induced by BoNT/A at the isolated rat neuromuscular junction (NMJ) and in other systems. Experimental data from several laboratories were simulated with two different models that were represented by sets of coupled, first-order differential equations. In this study, the 3-step sequential model developed by Simpson (J Pharmacol Exp Ther 212:16–21,1980) was used to estimate upper limits of the times during which anti-toxins and other impermeable inhibitors of BoNT/A can exert an effect. The experimentally determined binding reaction rate was verified to be consistent with published estimates for the rate constants for BoNT/A binding to and dissociating from its receptors. Because this 3-step model was not designed to reproduce temporal changes in paralysis with different toxin concentrations, a new BoNT/A species and rate (kS) were added at the beginning of the reaction sequence to create a 4-step scheme. This unbound initial species is transformed at a rate determined by kS to a free species that is capable of binding. By systematically adjusting the values of kS, the 4-step model simulated the rapid decline in NMJ function (kS ≥0.01), the less rapid onset of paralysis in mice following i.m. injections (kS = 0.001), and the slow onset of the therapeutic effects of BoNT/A (kS < 0.001) in man. This minimal modeling approach was not only verified by simulating experimental results, it helped to quantitatively define the time available for an inhibitor to have some effect (tinhib) and the relation between this time and the rate of paralysis onset. The 4-step model predicted that as the rate of paralysis becomes slower, the estimated upper limits of (tinhib) for impermeable inhibitors become longer. More generally, this modeling approach may be useful in studying the kinetics of other toxins or viruses that invade host cells by similar mechanisms, e.g., receptor-mediated endocytosis

    Presynaptic NMDA Receptors Mediate IPSC Potentiation at GABAergic Synapses in Developing Rat Neocortex

    Get PDF
    NMDA receptors are traditionally viewed as being located postsynaptically, at both synaptic and extrasynaptic locations. However, both anatomical and physiological studies have indicated the presence of NMDA receptors located presynaptically. Physiological studies of presynaptic NMDA receptors on neocortical GABAergic terminals and their possible role in synaptic plasticity are lacking.We report here that presynaptic NMDA receptors are present on GABAergic terminals in developing (postnatal day (PND) 12-15) but not older (PND21-25) rat frontal cortex. Using MK-801 in the recording pipette to block postsynaptic NMDA receptors, evoked and miniature IPSCs were recorded in layer II/III pyramidal cells in the presence of AMPA/KA receptor antagonists. Bath application of NMDA or NMDA receptor antagonists produced increases and decreases in mIPSC frequency, respectively. Physiologically patterned stimulation (10 bursts of 10 stimuli at 25 Hz delivered at 1.25 Hz) induced potentiation at inhibitory synapses in PND12-15 animals. This consisted of an initial rapid, large increase in IPSC amplitude followed by a significant but smaller persistent increase. Similar changes were not observed in PND21-25 animals. When 20 mM BAPTA was included in the recording pipette, potentiation was still observed in the PND12-15 group indicating that postsynaptic increases in calcium were not required. Potentiation was not observed when patterned stimulation was given in the presence of D-APV or the NR2B subunit antagonist Ro25-6981.The present results indicate that presynaptic NMDA receptors modulate GABA release onto neocortical pyramidal cells. Presynaptic NR2B subunit containing NMDA receptors are also involved in potentiation at developing GABAergic synapses in rat frontal cortex. Modulation of inhibitory GABAergic synapses by presynaptic NMDA receptors may be important for proper functioning of local cortical networks during development

    Reductions in External Divalent Cations Evoke Novel Voltage-Gated Currents in Sensory Neurons

    Get PDF
    It has long been recognized that divalent cations modulate cell excitability. Sensory nerve excitability is of critical importance to peripheral diseases associated with pain, sensory dysfunction and evoked reflexes. Thus we have studied the role these cations play on dissociated sensory nerve activity. Withdrawal of both Mg2+ and Ca2+ from external solutions activates over 90% of dissociated mouse sensory neurons. Imaging studies demonstrate a Na+ influx that then causes depolarization-mediated activation of voltage-gated Ca2+ channels (CaV), which allows Ca2+ influx upon divalent re-introduction. Inhibition of CaV (ω-conotoxin, nifedipine) or NaV (tetrodotoxin, lidocaine) fails to reduce the Na+ influx. The Ca2+ influx is inhibited by CaV inhibitors but not by TRPM7 inhibition (spermine) or store-operated channel inhibition (SKF96365). Withdrawal of either Mg2+ or Ca2+ alone fails to evoke cation influxes in vagal sensory neurons. In electrophysiological studies of dissociated mouse vagal sensory neurons, withdrawal of both Mg2+ and Ca2+ from external solutions evokes a large slowly-inactivating voltage-gated current (IDF) that cannot be accounted for by an increased negative surface potential. Withdrawal of Ca2+ alone fails to evoke IDF. Evidence suggests IDF is a non-selective cation current. The IDF is not reduced by inhibition of NaV (lidocaine, riluzole), CaV (cilnidipine, nifedipine), KV (tetraethylammonium, 4-aminopyridine) or TRPM7 channels (spermine). In summary, sensory neurons express a novel voltage-gated cation channel that is inhibited by external Ca2+ (IC50∼0.5 µM) or Mg2+ (IC50∼3 µM). Activation of this putative channel evokes substantial cation fluxes in sensory neurons

    An Inhibitory Effect of Extracellular Ca2+ on Ca2+-Dependent Exocytosis

    Get PDF
    Aim: Neurotransmitter release is elicited by an elevation of intracellular Ca 2+ concentration ([Ca 2+] i). The action potential triggers Ca 2+ influx through Ca 2+ channels which causes local changes of [Ca 2+] i for vesicle release. However, any direct role of extracellular Ca 2+ (besides Ca 2+ influx) on Ca 2+-dependent exocytosis remains elusive. Here we set out to investigate this possibility on rat dorsal root ganglion (DRG) neurons and chromaffin cells, widely used models for studying vesicle exocytosis. Results: Using photolysis of caged Ca 2+ and caffeine-induced release of stored Ca 2+, we found that extracellular Ca 2+ inhibited exocytosis following moderate [Ca 2+]i rises (2–3 mM). The IC50 for extracellular Ca 2+ inhibition of exocytosis (ECIE) was 1.38 mM and a physiological reduction (,30%) of extracellular Ca 2+ concentration ([Ca 2+]o) significantly increased the evoked exocytosis. At the single vesicle level, quantal size and release frequency were also altered by physiological [Ca 2+] o. The calcimimetics Mg 2+,Cd 2+, G418, and neomycin all inhibited exocytosis. The extracellular Ca 2+-sensing receptor (CaSR) was not involved because specific drugs and knockdown of CaSR in DRG neurons did not affect ECIE. Conclusion/Significance: As an extension of the classic Ca 2+ hypothesis of synaptic release, physiological levels of extracellular Ca 2+ play dual roles in evoked exocytosis by providing a source of Ca 2+ influx, and by directly regulatin
    corecore